cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099323 Expansion of (sqrt(1+3*x) + sqrt(1-x))/(2*sqrt(1-x)).

Original entry on oeis.org

1, 1, 0, 1, -1, 3, -6, 15, -36, 91, -232, 603, -1585, 4213, -11298, 30537, -83097, 227475, -625992, 1730787, -4805595, 13393689, -37458330, 105089229, -295673994, 834086421, -2358641376, 6684761125, -18985057351, 54022715451, -154000562758, 439742222071, -1257643249140
Offset: 0

Views

Author

Paul Barry, Oct 12 2004

Keywords

Comments

Binomial transform is A072100.
Signed Motzkin numbers with an additional leading 1.
Inverse binomial transform of A001405 gives this without the initial 1. So does the binomial transform of (-1)^n*A000108(n) = [1,-1,2,-5,14,-42,...]. - Philippe Deléham, Mar 20 2007

Crossrefs

Programs

  • Magma
    A099323:= func< n | (&+[(-1)^k*Binomial(n-1, k)*Catalan(k): k in [0..n]]) >;
    [A099323(n): n in [0..40]]; // G. C. Greubel, Nov 25 2021
    
  • Maple
    with(PolynomialTools): CoefficientList(convert(taylor((sqrt(1 + 3*x) + sqrt(1 - x))/2/sqrt(1 - x), x = 0, 33), polynom), x); # Taras Goy, Aug 07 2017
  • Mathematica
    CoefficientList[Series[(Sqrt[1+3x]+Sqrt[1-x])/(2Sqrt[1-x]),{x,0,40}],x] (* Harvey P. Dale, Feb 06 2015 *)
  • Sage
    [sum((-1)^k*binomial(n-1, k)*catalan_number(k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, Nov 25 2021

Formula

a(n) = 0^n + Sum_{k=0..n-1} binomial(n-1,k)*(-1)^k*C(k), where C(k) is the k-th Catalan number.
G.f.: 1 + x/(1-sqrt(x))/G(0), where G(k)= 1 + sqrt(x)/(1 - sqrt(x)/(1 + x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 28 2013
D-finite with recurrence: n*a(n) + 2*(n-2)*a(n-1) + 3*(-n+2)*a(n-2) = 0. - R. J. Mathar, Oct 10 2014
a(n) ~ -(-1)^n * 3^(n + 1/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 31 2017

Extensions

Edited by N. J. A. Sloane, Oct 05 2009