cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099358 a(n) = sum of digits of k^4 as k runs from 1 to n.

Original entry on oeis.org

1, 8, 17, 30, 43, 61, 68, 87, 105, 106, 122, 140, 162, 184, 202, 227, 246, 273, 283, 290, 317, 339, 370, 397, 422, 459, 477, 505, 530, 539, 561, 592, 619, 644, 663, 699, 727, 752, 770, 783, 814, 841, 866, 903, 921, 958, 1001, 1028, 1059, 1072, 1099, 1124, 1161
Offset: 1

Views

Author

Yalcin Aktar, Nov 16 2004

Keywords

Comments

Partial sums of A055565.

Examples

			a(3) = sum_digits(1^4) + sum_digits(2^4) + sum_digits(3^4) = 1 + 7 + 9 = 17.
		

Crossrefs

Cf. k^1 in A037123, k^2 in A071317 & k^3 in A071121.

Programs

  • Mathematica
    f[n_] := Block[{s = 0, k = 1}, While[k <= n, s = s + Plus @@ IntegerDigits[k^4]; k++ ]; s]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Nov 18 2004 *)
    Accumulate[Table[Total[IntegerDigits[n^4]],{n,60}]] (* Harvey P. Dale, Jun 08 2021 *)

Formula

a(n) = a(n-1) + sum of decimal digits of n^4.
a(n) = sum(k=1, n, sum(m=0, floor(log(k^4)), floor(10((k^4)/(10^(((floor(log(k^4))+1))-m)) - floor((k^4)/(10^(((floor(log(k^4))+1))-m))))))).
General formula: a(n)_p = sum(k=1, n, sum(m=0, floor(log(k^p)), floor(10((k^p)/(10^(((floor(log(k^p))+1))-m)) - floor ((k^p)/(10^(((floor(log(k^p))+1))-m))))))). Here a(n)_p is a sum of digits of k^p from k=1 to n.

Extensions

Edited and extended by Robert G. Wilson v, Nov 18 2004
Existing example replaced with a simpler one by Jon E. Schoenfield, Oct 20 2013