A099377 Numerators of the harmonic means of the divisors of the positive integers.
1, 4, 3, 12, 5, 2, 7, 32, 27, 20, 11, 18, 13, 7, 5, 80, 17, 36, 19, 20, 21, 22, 23, 16, 75, 52, 27, 3, 29, 10, 31, 64, 11, 68, 35, 324, 37, 38, 39, 32, 41, 7, 43, 22, 45, 23, 47, 120, 49, 100, 17, 156, 53, 18, 55, 56, 57, 116, 59, 30, 61, 31, 189, 448, 65, 11, 67, 68, 23, 35
Offset: 1
Examples
1, 4/3, 3/2, 12/7, 5/3, 2, 7/4, 32/15, ...
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Ore's Conjecture
Crossrefs
Cf. A099378.
Programs
-
Mathematica
f[n_] := DivisorSigma[0, n]/Plus @@ (1/Divisors@n); Numerator@ Array[f, 70] (* Robert G. Wilson v, Aug 04 2010 *) Table[Numerator[DivisorSigma[0, n]/DivisorSigma[-1, n]], {n, 70}] (* Ivan Neretin, Nov 13 2016 *)
-
PARI
a(n) = my(d=divisors(n)); numerator(#d/sum(k=1, #d, 1/d[k])); \\ Michel Marcus, Nov 13 2016
-
Python
from sympy import gcd, divisor_sigma def A099377(n): return (lambda x, y: y*n//gcd(x,y*n))(divisor_sigma(n),divisor_sigma(n,0)) # Chai Wah Wu, Oct 20 2021
Extensions
More terms from Robert G. Wilson v, Aug 04 2010