cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099427 a(1) = 1; for n > 1, a(n) = 1 + greatest common divisor of n and a(n-1).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 7, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4
Offset: 1

Views

Author

Gaetan Polard (gaetan27(AT)hotmail.com), Nov 18 2004

Keywords

Comments

a(A060401(n)) = n + 1; a(A192489(n)) = 2. - Reinhard Zumkeller, Jul 02 2011
For n >= 3, a(n) == n+1 (mod 2). - Robert Israel, Jan 10 2017

Examples

			a(9)=4 because 1+gcd(a(8),9)=1+gcd(3,9)=1+3.
		

Crossrefs

For position of first occurrence of n see A060401.

Programs

  • Haskell
    a099427 n = a099427_list !! (n-1)
    a099427_list = 1 : map (+ 1) (zipWith gcd [2..] a099427_list)
    -- Reinhard Zumkeller, Jun 23 2015, Jul 02 2011
  • Maple
    f:= proc(n) option remember; 1 + igcd(n,procname(n-1)) end proc:
    f(1):= 1:
    map(f, [$1..1000]); # Robert Israel, Jan 10 2017
  • Mathematica
    a[1] = 1; a[n_] := a[n] = GCD[n, a[n - 1]] + 1; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Nov 18 2004 *)
    nxt[{n_,a_}]:={n+1,GCD[n+1,a]+1}; Transpose[NestList[nxt,{1,1},110]] [[2]] (* Harvey P. Dale, Nov 22 2014 *)

Extensions

Edited and extended by Robert G. Wilson v, Nov 18 2004