A099444 A Chebyshev transform of Fib(2n+2).
1, 3, 7, 15, 32, 69, 149, 321, 691, 1488, 3205, 6903, 14867, 32019, 68960, 148521, 319873, 688917, 1483735, 3195552, 6882329, 14822619, 31923791, 68754951, 148079008, 318920925, 686866813, 1479319737, 3186042539, 6861847920
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Dror Bar-Natan, The Rolfsen Knot Table
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-1).
Crossrefs
Cf. A001906.
Programs
-
Mathematica
LinearRecurrence[{3,-3,3,-1},{1,3,7,15},30] (* Harvey P. Dale, Sep 30 2018 *)
Formula
G.f.: (1+x^2)/(1-3x+3x^2-3x^3+x^4);
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*Fib(2(n-2k)+2)};
a(n) = sum{k=0..n, binomial((n+k)/2, k)(-1)^((n-k)/2)(1+(-1)^(n+k))Fib(2k+2)/2};
a(n) = sum{k=0..n, A099445(n-k)*binomial(1, k/2)(1+(-1)^k)/2}.
Comments