cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099445 An Alexander sequence for the Miller Institute knot.

Original entry on oeis.org

1, 3, 6, 12, 25, 54, 117, 252, 542, 1167, 2514, 5415, 11662, 25116, 54093, 116502, 250913, 540396, 1163862, 2506635, 5398594, 11627067, 25041462, 53932332, 116155217, 250165974, 538787805, 1160398812, 2499175726, 5382528183
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is a parameterization of the Alexander polynomial for the knot 6_2 (Miller Institute knot). The g.f. is the image of that of Fib(2n+2) under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).

Crossrefs

Cf. A001906.

Programs

  • Magma
    I:=[1,3,6,12,25,54,117,252]; [n le 8 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
  • Mathematica
    CoefficientList[Series[(1 - x) (x + 1) (x^2 + 1)/(x^4 - 3 x^3 + 3 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{3,-3,3,-1},{1,3,6,12,25},30] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    Vec(-(x-1)*(x+1)*(x^2+1)/(x^4-3*x^3+3*x^2-3*x+1) + O(x^100)) \\ Colin Barker, Feb 10 2014
    

Formula

G.f.: -(x-1)*(x+1)*(x^2+1) / (x^4-3*x^3+3*x^2-3*x+1). - Colin Barker, Feb 10 2014
a(n) = A099444(n)-A099444(n-2).
a(n) = 3*a(n-1)-3*a(n-2)+3*a(n-3)-a(n-4) for n>4. - Colin Barker, Feb 10 2014

Extensions

G.f. corrected by Colin Barker, Feb 10 2014
Showing 1-1 of 1 results.