cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099444 A Chebyshev transform of Fib(2n+2).

Original entry on oeis.org

1, 3, 7, 15, 32, 69, 149, 321, 691, 1488, 3205, 6903, 14867, 32019, 68960, 148521, 319873, 688917, 1483735, 3195552, 6882329, 14822619, 31923791, 68754951, 148079008, 318920925, 686866813, 1479319737, 3186042539, 6861847920
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is a parameterization of the Alexander polynomial for the knot 6_2 (Miller Institute knot). The g.f. is the image of the g.f. of Fib(2n+2) under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
This sequence is the p-INVERT of A010892 using p(S) = 1 - S - S^2; see A292324. - Clark Kimberling, Sep 26 2017

Crossrefs

Cf. A001906.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,3,-1},{1,3,7,15},30] (* Harvey P. Dale, Sep 30 2018 *)

Formula

G.f.: (1+x^2)/(1-3x+3x^2-3x^3+x^4);
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*Fib(2(n-2k)+2)};
a(n) = sum{k=0..n, binomial((n+k)/2, k)(-1)^((n-k)/2)(1+(-1)^(n+k))Fib(2k+2)/2};
a(n) = sum{k=0..n, A099445(n-k)*binomial(1, k/2)(1+(-1)^k)/2}.
Showing 1-1 of 1 results.