A099461 An Alexander sequence for the knot 9_48.
1, 7, 38, 196, 1001, 5110, 26093, 133252, 680510, 3475339, 17748434, 90640627, 462898478, 2364006148, 12072895733, 61655851222, 314874250049, 1608051650884, 8212262868470, 41939735818687, 214184746483778, 1093833919809295, 5586171115205846, 28528378178106436, 145693417671662033, 744051127629095062, 3799842775146922277, 19405662567631938052, 99104031922539424718
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Dror Bar-Natan, 9 48, The Knot Atlas.
- Index entries for linear recurrences with constant coefficients, signature (7,-11,7,-1).
Programs
-
Magma
I:=[7,38,196,1001]; [1] cat [n le 4 select I[n] else 7*Self(n-1) - 11*Self(n-2) +7*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 18 2021
-
Mathematica
LinearRecurrence[{7,-11,7,-1},{1,7,38,196,1001},40] (* Harvey P. Dale, Jun 18 2021 *)
-
Sage
def A099461_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)*(1+x)*(1+x^2)/(1-7*x+11*x^2-7*x^3+x^4) ).list() A099461_list(40) # G. C. Greubel, Nov 18 2021
Formula
G.f.: (1-x)*(1+x)*(1+x^2)/(1-7*x+11*x^2-7*x^3+x^4). - Corrected by R. J. Mathar, Nov 23 2012
Comments