A099483 A Fibonacci convolution.
0, 1, 3, 7, 18, 48, 126, 329, 861, 2255, 5904, 15456, 40464, 105937, 277347, 726103, 1900962, 4976784, 13029390, 34111385, 89304765, 233802911, 612103968, 1602508992, 4195423008, 10983760033, 28755857091, 75283811239, 197095576626
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,-2,3,-1},{0,1,3,7},30] (* Harvey P. Dale, May 23 2016 *)
Formula
G.f.: x/((1+x^2)(1-3x+x^2)); a(n)=3a(n-1)-2a(n-2)+3a(n-3); a(n)=sum{k=0..n, cos(pi*k/2)F(2(n-k))}. a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^n*(3^(n-2k)-0^(n-2k))/3}.
(1/6) [2Fib(2n+2) - I^n - (-I)^n ]. - Ralf Stephan, Dec 04 2004
Comments