A099484 A Fibonacci convolution.
1, 1, 2, 7, 19, 48, 125, 329, 862, 2255, 5903, 15456, 40465, 105937, 277346, 726103, 1900963, 4976784, 13029389, 34111385, 89304766, 233802911, 612103967, 1602508992, 4195423009, 10983760033, 28755857090, 75283811239, 197095576627
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,-2,3,-1},{1,1,2,7},40] (* Harvey P. Dale, Mar 25 2020 *)
Formula
a(n)=3a(n-1)-2a(n-2)+3a(n-3);
a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^n*(3^(n-2k)+2*0^(n-2k))/3};
a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))F(2(n-k)+2)}.
(1/3) [Fib(2n+2) + I^n + (-I)^n ]. - Ralf Stephan, Dec 04 2004
Comments