cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099494 A Chebyshev transform of Fibonacci(n)+(-1)^n.

Original entry on oeis.org

1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1
Offset: 0

Views

Author

Paul Barry, Oct 19 2004

Keywords

Comments

A Chebyshev transform of A008346, which has g.f. 1/(1-2x^2-x^3). The image of G(x) under the Chebyshev transform is (1/(1+x^2))*G(x/(1+x^2)).
Periodic with period length 30. - Ray Chandler, Sep 08 2015

Crossrefs

Formula

G.f.: (1+x^2)^2/(1+x^2-x^3+x^4+x^6).
a(n) = -a(n-2)+a(n-3)-a(n-4)-a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(F(n-2*k)+(-1)^(n-2*k)).
a(n) = A014019(n-1) + A000484(n).