A099496 a(n) = (-1)^n * Fibonacci(2*n+1).
1, -2, 5, -13, 34, -89, 233, -610, 1597, -4181, 10946, -28657, 75025, -196418, 514229, -1346269, 3524578, -9227465, 24157817, -63245986, 165580141, -433494437, 1134903170, -2971215073, 7778742049, -20365011074, 53316291173, -139583862445, 365435296162, -956722026041
Offset: 0
Examples
a(3) = (-1)^3 * Fibonacci(2 * 3 + 1) = -Fibonacci(7) = -13. - _Indranil Ghosh_, Feb 04 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..2386
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (-3,-1).
Programs
-
Magma
[(-1)^n*Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
-
Maple
seq((-1)^n*combinat:-fibonacci(2*n+1), n=0 .. 100); # Robert Israel, Jul 02 2015
-
Mathematica
Table[(-1)^n Fibonacci[2 n + 1], {n, 0, 30}] (* Harvey P. Dale, Aug 22 2016 *)
Formula
G.f.: (1+x)/(1+3x+x^2).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*cos((n-2k)*Pi/2) (with interpolated zeros);
a(n) = Fibonacci(n+1)(-1)^(n/2)(1 + (-1)^n)/2 (with interpolated zeros).
a(n) = -3*a(n-1) - a(n-2), a(0)=1, a(1)=-2. - Philippe Deléham, Nov 03 2008
From Adam Helman (helman(AT)san.rr.com), May 09 2010: (Start)
a(n) = ceiling( phi / (Fibonacci(n+1)/Fibonacci(n) - phi) ).
An exact expression for the inverse fractional error is phi / (Fibonacci(n+1)/Fibonacci(n) - phi) = (phi/sqrt(5)) * ((-1)^n *(phi^2n) - 1). (End)
a(n) = (-1)^n*A122367(n). - R. J. Mathar, Jul 23 2010
Comments