A099511
Row sums of triangle A099510, so that a(n) = Sum_{k=0..n} coefficient of z^k in (1 + 2*z + z^2)^(n-[k/2]), where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 3, 6, 17, 45, 116, 305, 799, 2090, 5473, 14329, 37512, 98209, 257115, 673134, 1762289, 4613733, 12078908, 31622993, 82790071, 216747218, 567451585, 1485607537, 3889371024, 10182505537, 26658145587, 69791931222, 182717648081
Offset: 0
A099509
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 7, 1, 1, 5, 10, 16, 6, 3, 1, 6, 15, 30, 19, 16, 1, 1, 7, 21, 50, 45, 51, 10, 4, 1, 8, 28, 77, 90, 126, 45, 30, 1, 1, 9, 36, 112, 161, 266, 141, 126, 15, 5, 1, 10, 45, 156, 266, 504, 357, 393, 90, 50, 1, 1, 11, 55, 210, 414, 882, 784, 1016, 357
Offset: 0
Rows begin:
[1],
[1,1],
[1,2,1],
[1,3,3,2],
[1,4,6,7,1],
[1,5,10,16,6,3],
[1,6,15,30,19,16,1],
[1,7,21,50,45,51,10,4],
[1,8,28,77,90,126,45,30,1],
[1,9,36,112,161,266,141,126,15,5],...
and can be derived from coefficients of (1+z+z^2)^n:
[1],
[1,1,1],
[1,2,3,2,1],
[1,3,6,7,6,3,1],
[1,4,10,16,19,16,10,4,1],
[1,5,15,30,45,51,45,30,15,5,1],...
by shifting each column k down by [k/2] rows.
A099512
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + 3*z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 1, 3, 1, 6, 1, 1, 9, 11, 6, 1, 12, 30, 45, 1, 1, 15, 58, 144, 30, 9, 1, 18, 95, 330, 195, 144, 1, 1, 21, 141, 630, 685, 873, 58, 12, 1, 24, 196, 1071, 1770, 3258, 685, 330, 1, 1, 27, 260, 1680, 3801, 9198, 3989, 3258, 95, 15, 1, 30, 333, 2484, 7210, 21672, 15533
Offset: 0
Rows begin:
[1],
[1,3],
[1,6,1],
[1,9,11,6],
[1,12,30,45,1],
[1,15,58,144,30,9],
[1,18,95,330,195,144,1],
[1,21,141,630,685,873,58,12],
[1,24,196,1071,1770,3258,685,330,1],
[1,27,260,1680,3801,9198,3989,3258,95,15],...
and can be derived from coefficients of (1+3*z+z^2)^n:
[1],
[1,3,1],
[1,6,11,6,1],
[1,9,30,45,30,9,1],
[1,12,58,144,195,144,58,12,1],
[1,15,95,330,685,873,685,330,95,15,1],...
by shifting each column k down by [k/2] rows.
A099514
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + z + 2*z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 13, 4, 1, 5, 14, 28, 18, 12, 1, 6, 20, 50, 49, 56, 8, 1, 7, 27, 80, 105, 161, 56, 32, 1, 8, 35, 119, 195, 366, 210, 200, 16, 1, 9, 44, 168, 329, 721, 581, 732, 160, 80, 1, 10, 54, 228, 518, 1288, 1337, 2045, 780, 640, 32, 1, 11, 65, 300, 774, 2142, 2716, 4824, 2674, 2884, 432, 192
Offset: 0
Rows begin:
[1],
[1,1],
[1,2,2],
[1,3,5,4],
[1,4,9,13,4],
[1,5,14,28,18,12],
[1,6,20,50,49,56,8],
[1,7,27,80,105,161,56,32],
[1,8,35,119,195,366,210,200,16],
[1,9,44,168,329,721,581,732,160,80],...
and can be derived from coefficients of (1+z+2*z^2)^n:
[1],
[1,1,2],
[1,2,5,4,4],
[1,3,9,13,18,12,8],
[1,4,14,28,49,56,56,32,16],
[1,5,20,50,105,161,210,200,160,80,32],...
by shifting each column k down by [k/2] rows.
-
With[{m = 11}, CoefficientList[CoefficientList[Series[(1-x+x*y-2*x^2*y^2)/ ((1-x)^2-4*x^2*y^2+3*x^3*y^2+4*x^4*y^4), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k)=if(n
A099527
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (2 + 3*z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 2, 3, 4, 12, 1, 8, 36, 13, 6, 16, 96, 66, 63, 1, 32, 240, 248, 360, 33, 9, 64, 576, 800, 1560, 321, 180, 1, 128, 1344, 2352, 5760, 1970, 1683, 62, 12, 256, 3072, 6496, 19152, 9420, 10836, 985, 390, 1, 512, 6912, 17152, 59136, 38472, 55692, 8989, 5418, 100, 15
Offset: 0
Rows begin:
[1],
[2,3],
[4,12,1],
[8,36,13,6],
[16,96,66,63,1],
[32,240,248,360,33,9],
[64,576,800,1560,321,180,1],
[128,1344,2352,5760,1970,1683,62,12],
[256,3072,6496,19152,9420,10836,985,390,1],
[512,6912,17152,59136,38472,55692,8989,5418,100,15],...
and can be derived from the coefficients of (2+3*z+z^2)^n:
[1],
[2,3,1],
[4,12,13,6,1],
[8,36,66,63,33,9,1],
[16,96,248,360,321,180,62,12,1],
[32,240,800,1560,1970,1683,985,390,100,15,1],...
by shifting each column k down by [k/2] rows.
Showing 1-5 of 5 results.
Comments