cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A099510 Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + 2*z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 1, 6, 6, 4, 1, 8, 15, 20, 1, 1, 10, 28, 56, 15, 6, 1, 12, 45, 120, 70, 56, 1, 1, 14, 66, 220, 210, 252, 28, 8, 1, 16, 91, 364, 495, 792, 210, 120, 1, 1, 18, 120, 560, 1001, 2002, 924, 792, 45, 10, 1, 20, 153, 816, 1820, 4368, 3003, 3432, 495, 220, 1, 1, 22, 190
Offset: 0

Views

Author

Paul D. Hanna, Oct 20 2004

Keywords

Comments

Row sums form A099511. In general if T(n,k) = coefficient of z^k in (a + b*z + c*z^2)^(n-[k/2]), then the resulting number triangle will have the o.g.f.: ((1-a*x-c*x^2*y^2) + b*x*y)/((1-a*x-c*x^2*y^2)^2 - x*(b*x*y)^2).

Examples

			Rows begin:
[1],
[1,2],
[1,4,1],
[1,6,6,4],
[1,8,15,20,1],
[1,10,28,56,15,6],
[1,12,45,120,70,56,1],
[1,14,66,220,210,252,28,8],
[1,16,91,364,495,792,210,120,1],
[1,18,120,560,1001,2002,924,792,45,10],...
and can be derived from coefficients of (1+2*z+z^2)^n:
[1],
[1,2,1],
[1,4,6,4,1],
[1,6,15,20,15,6,1],
[1,8,28,56,70,56,28,8,1],
[1,10,45,120,210,252,210,120,45,10,1],...
by shifting each column k down by [k/2] rows.
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

G.f.: (1-x+2*x*y-x^2*y^2)/((1-x)^2-2*x^2*y^2-2*x^3*y^2+x^4*y^4). T(n, k) = binomial(2*n-2*(k\2), k).

A376726 Expansion of (1 + x^2 - x^3)/((1 + x^2 - x^3)^2 - 4*x^2).

Original entry on oeis.org

1, 0, 3, 1, 5, 10, 8, 35, 30, 85, 137, 201, 476, 616, 1357, 2172, 3735, 7193, 11213, 21782, 36064, 64095, 115130, 193769, 354737, 604049, 1074008, 1889968, 3273785, 5839608, 10106859, 17880785, 31325077, 54793282, 96710296, 168730043, 297336790, 520856765, 913684857
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x^2-x^3)/((1+x^2-x^3)^2-4*x^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k+1, 2*n-4*k+1));

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k+1,2*n-4*k+1).

A376727 Expansion of (1 + x^3 - x^4)/((1 + x^3 - x^4)^2 - 4*x^3).

Original entry on oeis.org

1, 0, 0, 3, 1, 0, 5, 10, 1, 7, 35, 21, 10, 84, 126, 47, 166, 462, 343, 341, 1288, 1731, 1170, 3081, 6453, 5685, 7553, 19572, 25280, 24004, 52789, 93844, 95932, 143435, 299577, 386536, 448673, 873754, 1411193, 1625003, 2536215, 4639077, 6097214, 7959492, 14238226
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec((1+x^3-x^4)/((1+x^3-x^4)^2-4*x^3))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k+1, 2*n-6*k+1));

Formula

a(n) = 2*a(n-3) + 2*a(n-4) - a(n-6) + 2*a(n-7) - a(n-8).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k+1,2*n-6*k+1).

A376728 Expansion of (1 + x^4 - x^5)/((1 + x^4 - x^5)^2 - 4*x^4).

Original entry on oeis.org

1, 0, 0, 0, 3, 1, 0, 0, 5, 10, 1, 0, 7, 35, 21, 1, 9, 84, 126, 36, 12, 165, 462, 330, 68, 287, 1287, 1716, 730, 533, 3004, 6435, 5022, 2045, 6293, 19449, 24329, 13345, 14008, 50524, 92400, 76912, 47481, 120156, 294124, 354488, 237139, 299421, 823200, 1354588
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec((1+x^4-x^5)/((1+x^4-x^5)^2-4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*k+1, 2*n-8*k+1));

Formula

a(n) = 2*a(n-4) + 2*a(n-5) - a(n-8) + 2*a(n-9) - a(n-10).
a(n) = Sum_{k=0..floor(n/4)} binomial(2*k+1,2*n-8*k+1).

A376785 Expansion of (1 + x - x^3)/((1 + x - x^3)^2 - 4*x).

Original entry on oeis.org

1, 3, 5, 8, 19, 46, 98, 201, 429, 937, 2024, 4325, 9260, 19916, 42841, 91999, 197485, 424160, 911255, 1957402, 4203998, 9029425, 19394681, 41658577, 89478064, 192188361, 412801176, 886657848, 1904452689, 4090568027, 8786123349, 18871711384, 40534539675, 87064092870
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^3)/((1+x-x^3)^2-4x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-1,2,2,0,-1},{1,3,5,8,19,46},40] (* Harvey P. Dale, Jun 29 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x-x^3)/((1+x-x^3)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, 2*k+1));

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-6).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k+1,2*k+1).

A376786 Expansion of (1 + x - x^4)/((1 + x - x^4)^2 - 4*x).

Original entry on oeis.org

1, 3, 5, 7, 10, 21, 48, 99, 183, 326, 602, 1165, 2282, 4396, 8318, 15675, 29743, 56841, 108765, 207510, 394809, 750880, 1429845, 2725685, 5196420, 9901692, 18859649, 35921156, 68432064, 130388316, 248437405, 473322419, 901717453, 1717851555, 3272777450
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x-x^4)/((1+x-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-6*k+1, 2*k+1));

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) + 2*a(n-5) - a(n-8).
a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-6*k+1,2*k+1).

A387627 a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(2*n-2*k+1,2*k+1).

Original entry on oeis.org

1, 3, 7, 27, 83, 263, 855, 2723, 8731, 27999, 89663, 287355, 920771, 2950263, 9453607, 30291667, 97062123, 311012623, 996563855, 3193247403, 10231988371, 32785923879, 105054547063, 336621829635, 1078623042491, 3456186066623, 11074510391007, 35485583833307
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k* Binomial(2*n-2*k+1, 2*k+1): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*n-2*k+1,2*k+1],{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(2*n-2*k+1, 2*k+1));
    

Formula

G.f.: (1+x-2*x^2)/((1+x-2*x^2)^2 - 4*x).
a(n) = 2*a(n-1) + 3*a(n-2) + 4*a(n-3) - 4*a(n-4).
Showing 1-7 of 7 results.