A099510
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + 2*z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 1, 2, 1, 4, 1, 1, 6, 6, 4, 1, 8, 15, 20, 1, 1, 10, 28, 56, 15, 6, 1, 12, 45, 120, 70, 56, 1, 1, 14, 66, 220, 210, 252, 28, 8, 1, 16, 91, 364, 495, 792, 210, 120, 1, 1, 18, 120, 560, 1001, 2002, 924, 792, 45, 10, 1, 20, 153, 816, 1820, 4368, 3003, 3432, 495, 220, 1, 1, 22, 190
Offset: 0
Rows begin:
[1],
[1,2],
[1,4,1],
[1,6,6,4],
[1,8,15,20,1],
[1,10,28,56,15,6],
[1,12,45,120,70,56,1],
[1,14,66,220,210,252,28,8],
[1,16,91,364,495,792,210,120,1],
[1,18,120,560,1001,2002,924,792,45,10],...
and can be derived from coefficients of (1+2*z+z^2)^n:
[1],
[1,2,1],
[1,4,6,4,1],
[1,6,15,20,15,6,1],
[1,8,28,56,70,56,28,8,1],
[1,10,45,120,210,252,210,120,45,10,1],...
by shifting each column k down by [k/2] rows.
A376726
Expansion of (1 + x^2 - x^3)/((1 + x^2 - x^3)^2 - 4*x^2).
Original entry on oeis.org
1, 0, 3, 1, 5, 10, 8, 35, 30, 85, 137, 201, 476, 616, 1357, 2172, 3735, 7193, 11213, 21782, 36064, 64095, 115130, 193769, 354737, 604049, 1074008, 1889968, 3273785, 5839608, 10106859, 17880785, 31325077, 54793282, 96710296, 168730043, 297336790, 520856765, 913684857
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec((1+x^2-x^3)/((1+x^2-x^3)^2-4*x^2))
-
a(n) = sum(k=0, n\2, binomial(2*k+1, 2*n-4*k+1));
A376727
Expansion of (1 + x^3 - x^4)/((1 + x^3 - x^4)^2 - 4*x^3).
Original entry on oeis.org
1, 0, 0, 3, 1, 0, 5, 10, 1, 7, 35, 21, 10, 84, 126, 47, 166, 462, 343, 341, 1288, 1731, 1170, 3081, 6453, 5685, 7553, 19572, 25280, 24004, 52789, 93844, 95932, 143435, 299577, 386536, 448673, 873754, 1411193, 1625003, 2536215, 4639077, 6097214, 7959492, 14238226
Offset: 0
-
my(N=50, x='x+O('x^N)); Vec((1+x^3-x^4)/((1+x^3-x^4)^2-4*x^3))
-
a(n) = sum(k=0, n\3, binomial(2*k+1, 2*n-6*k+1));
A376728
Expansion of (1 + x^4 - x^5)/((1 + x^4 - x^5)^2 - 4*x^4).
Original entry on oeis.org
1, 0, 0, 0, 3, 1, 0, 0, 5, 10, 1, 0, 7, 35, 21, 1, 9, 84, 126, 36, 12, 165, 462, 330, 68, 287, 1287, 1716, 730, 533, 3004, 6435, 5022, 2045, 6293, 19449, 24329, 13345, 14008, 50524, 92400, 76912, 47481, 120156, 294124, 354488, 237139, 299421, 823200, 1354588
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,2,0,0,-1,2,-1).
-
my(N=50, x='x+O('x^N)); Vec((1+x^4-x^5)/((1+x^4-x^5)^2-4*x^4))
-
a(n) = sum(k=0, n\4, binomial(2*k+1, 2*n-8*k+1));
A376785
Expansion of (1 + x - x^3)/((1 + x - x^3)^2 - 4*x).
Original entry on oeis.org
1, 3, 5, 8, 19, 46, 98, 201, 429, 937, 2024, 4325, 9260, 19916, 42841, 91999, 197485, 424160, 911255, 1957402, 4203998, 9029425, 19394681, 41658577, 89478064, 192188361, 412801176, 886657848, 1904452689, 4090568027, 8786123349, 18871711384, 40534539675, 87064092870
Offset: 0
-
CoefficientList[Series[(1+x-x^3)/((1+x-x^3)^2-4x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-1,2,2,0,-1},{1,3,5,8,19,46},40] (* Harvey P. Dale, Jun 29 2025 *)
-
my(N=40, x='x+O('x^N)); Vec((1+x-x^3)/((1+x-x^3)^2-4*x))
-
a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, 2*k+1));
A376786
Expansion of (1 + x - x^4)/((1 + x - x^4)^2 - 4*x).
Original entry on oeis.org
1, 3, 5, 7, 10, 21, 48, 99, 183, 326, 602, 1165, 2282, 4396, 8318, 15675, 29743, 56841, 108765, 207510, 394809, 750880, 1429845, 2725685, 5196420, 9901692, 18859649, 35921156, 68432064, 130388316, 248437405, 473322419, 901717453, 1717851555, 3272777450
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec((1+x-x^4)/((1+x-x^4)^2-4*x))
-
a(n) = sum(k=0, n\4, binomial(2*n-6*k+1, 2*k+1));
A387627
a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(2*n-2*k+1,2*k+1).
Original entry on oeis.org
1, 3, 7, 27, 83, 263, 855, 2723, 8731, 27999, 89663, 287355, 920771, 2950263, 9453607, 30291667, 97062123, 311012623, 996563855, 3193247403, 10231988371, 32785923879, 105054547063, 336621829635, 1078623042491, 3456186066623, 11074510391007, 35485583833307
Offset: 0
-
[&+[2^k* Binomial(2*n-2*k+1, 2*k+1): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
-
Table[Sum[2^k*Binomial[2*n-2*k+1,2*k+1],{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 04 2025 *)
-
a(n) = sum(k=0, n\2, 2^k*binomial(2*n-2*k+1, 2*k+1));
Showing 1-7 of 7 results.
Comments