cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099513 Row sums of triangle A099512, so that a(n) = Sum_{k=0..n} coefficient of z^k in (1 + 3*z + z^2)^(n-[k/2]), where [k/2] is the integer floor of k/2.

Original entry on oeis.org

1, 4, 8, 27, 89, 257, 784, 2421, 7336, 22324, 68147, 207549, 632177, 1926608, 5870089, 17884476, 54493120, 166034731, 505883825, 1541369745, 4696373312, 14309268413, 43598614528, 132839740908, 404746601923, 1233213978037
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2004

Keywords

Crossrefs

Cf. A099512.

Programs

  • Mathematica
    LinearRecurrence[{2,1,7,-1},{1,4,8,27},30] (* or *) CoefficientList[ Series[ (1+2x-x^2)/(1-2x-x^2-7x^3+x^4),{x,0,30}],x] (* Harvey P. Dale, Jul 12 2011 *)
  • PARI
    a(n)=sum(k=0,n,polcoeff((1+3*x+x^2+x*O(x^k))^(n-k\2),k))

Formula

G.f.: (1+2*x-x^2)/(1-2*x-x^2-7*x^3+x^4).
a(0)=1, a(1)=4, a(2)=8, a(3)=27, a(n) = 2*a(n-1)+a(n-2)+7*a(n-3)-a(n-4). - Harvey P. Dale, Jul 12 2011