A099555 Triangle, read by rows, where T(n,k) = (n-floor(k/2))^k for k = 0..2*n - 1, with T(0,0) = 1.
1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 8, 1, 1, 1, 4, 9, 27, 16, 32, 1, 1, 1, 5, 16, 64, 81, 243, 64, 128, 1, 1, 1, 6, 25, 125, 256, 1024, 729, 2187, 256, 512, 1, 1, 1, 7, 36, 216, 625, 3125, 4096, 16384, 6561, 19683, 1024, 2048, 1, 1, 1, 8, 49, 343, 1296, 7776, 15625, 78125, 65536
Offset: 0
Examples
The asymptotic behavior can be demonstrated at the 4th row function: R_4(y) = 1 + 4*y + 9*y^2/2! + 27*y^3/3! + 16*y^4/4! + 32*y^5/5! + y^6/6! + y^7/7!; R_4(1) = 14.93492... = (0.895684...)*r^4, where r = 2.0207473586... Rows begin: [1] [1, 1], [1, 2, 1, 1], [1, 3, 4, 8, 1, 1], [1, 4, 9, 27, 16, 32, 1, 1], [1, 5, 16, 64, 81, 243, 64, 128, 1, 1], [1, 6, 25, 125, 256, 1024, 729, 2187, 256, 512, 1, 1], [1, 7, 36, 216, 625, 3125, 4096, 16384, 6561, 19683, 1024, 2048, 1, 1], ... which can be derived from the square array A003992: [1, 0, 0, 0, 0, 0, 0, ...], [1, 1, 1, 1, 1, 1, 1, ...], [1, 2, 4, 8, 16, 32, 64, ...], [1, 3, 9, 27, 81, 243, 729, ...], [1, 4, 16, 64, 256, 1024, 4096, ...], [1, 5, 25, 125, 625, 3125, 15625, ...], ... by shifting each column k down by floor(k/2) rows, and omitting the zeros coming from row 0 of A003992.
Programs
-
Maple
seq(print(`if`(n=0, 1, seq((n - floor(k/2))^k, k=0..2*n-1))), n=0..10); # Georg Fischer, Nov 21 2024
-
PARI
T(n,k)=(n-k\2)^k
Formula
E.g.f.: ((1-x*cosh(sqrt(x)*y)) + sqrt(x)*sinh(sqrt(x)*y))/(1+x^2-2*x*cosh(sqrt(x)*y)).
Extensions
Definition corrected by Georg Fischer, Nov 21 2024
Comments