cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A099554 Decimal expansion of the constant x that satisfies x = exp(1/sqrt(x)).

Original entry on oeis.org

2, 0, 2, 0, 7, 4, 7, 3, 5, 8, 6, 1, 1, 8, 5, 7, 6, 6, 8, 1, 1, 2, 6, 9, 5, 2, 8, 7, 2, 4, 7, 3, 2, 3, 6, 6, 4, 9, 9, 4, 3, 3, 1, 1, 3, 1, 4, 1, 6, 2, 5, 2, 9, 8, 9, 7, 3, 1, 7, 1, 1, 6, 0, 8, 2, 6, 9, 2, 8, 5, 7, 7, 0, 0, 8, 5, 3, 6, 0, 5, 7, 4, 4, 4, 0, 7, 9, 5, 0, 5, 7, 3, 5, 5, 2, 9, 6, 1, 1, 6, 9, 3, 5, 7, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 22 2004

Keywords

Comments

This constant arises from the series: S(n) = Sum_{k=0..2n} (n-[k/2])^k/k!. The asymptotic behavior of this series is given by: S(n) ~ c*x^n where c = (x+sqrt(x))/(1+2*sqrt(x)) = 0.8957126... and x = 2.0207473586... satisfies x = exp(1/sqrt(x)).

Examples

			x=2.02074735861185766811269528724732366499433113141625298973171160826928577...
To demonstrate how this constant describes the asymptotics of the sum:
S(n) = Sum_{k=0..2n} (n-[k/2])^k/k! ~ c*x^n
evaluate the sum at n=5:
S(5) = 1+ 5+ 4^2/2!+ 4^3/3!+ 3^4/4!+ 3^5/5!+ 2^6/6!+ 2^7/7!+ 1/8!+ 1/9!
= 782291/25920 = 30.1809799... = (0.89572199...)*x^5
and evaluate the sum at n=6:
S(6) = 1+ 6+ 5^2/2!+ 5^3/3!+ 4^4/4!+ 4^5/5!+ 3^6/6!+ 3^7/7!+ 2^8/8!+ 2^9/9!+ 1/10!+ 1/11!
= 608606683/9979200 = 60.9875223... = (0.89571298...)*x^6.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x==Exp[1/Sqrt[x]],{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jan 06 2013 *)
    RealDigits[ 1/(4*ProductLog[1/2]^2), 10, 105] // First (* Jean-François Alcover, Feb 15 2013 *)
  • PARI
    solve(x=2,2.1,x-exp(1/sqrt(x)))

Formula

Equals 1/(4*A202356^2). - Vaclav Kotesovec, Oct 06 2020

A099556 a(n) = Sum_{k=0..2*n} (n - floor(k/2))^k.

Original entry on oeis.org

1, 2, 5, 18, 91, 604, 5123, 53808, 679389, 10107934, 174544505, 3451802006, 77302457079, 1942469215432, 54339334903015, 1680597906265988, 57116435383949097, 2121725700531106842, 85740960774906267853, 3753239245360442525498, 177284859933198522968819, 9004760569281510790598100
Offset: 1

Views

Author

Paul D. Hanna, Oct 22 2004

Keywords

Crossrefs

Cf. A099555.

Programs

  • PARI
    a(n)=sum(k=0,2*n,(n-k\2)^k)

Formula

Row sums of triangle A099555.

Extensions

a(13) and following terms from Georg Fischer, Nov 21 2024
Showing 1-3 of 3 results.