cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099560 a(n) = Sum_{k=0..floor(n/3)} C(n-2k,k-1).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 4, 5, 9, 13, 18, 28, 41, 59, 88, 129, 188, 277, 406, 594, 872, 1278, 1872, 2745, 4023, 5895, 8641, 12664, 18559, 27201, 39865, 58424, 85626, 125491, 183915, 269542, 395033, 578948, 848491, 1243524, 1822472, 2670964, 3914488
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-2k,k-1],{k,0,Floor[n/3]}],{n,0,50}] (* or *) LinearRecurrence[{1,0,2,-1,0,-1},{0,0,0,1,1,1},50] (* Harvey P. Dale, May 25 2014 *)
    CoefficientList[Series[x^3/((1 - x^3) (1 - x - x^3)), {x,0,50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(x^3/((1-x^3)*(1-x-x^3)))) \\ G. C. Greubel, Apr 28 2017

Formula

G.f.: x^3/((1-x^3)(1-x-x^3)).
a(n) = a(n-1) + 2*a(n-3) - a(n-4) - a(n-6).
a(n) = a(n-3) + A000930(n-3). - R. J. Mathar, Nov 24 2013
a(n) = A000930(n-2) - A079978(n+1), n>3. - R. J. Mathar, Dec 08 2022