A099564 a(0) = 0; for n > 0, a(n) = final nonzero number in the sequence n, f(n,2), f(f(n,2),3), f(f(f(n,2),3),4),..., where f(n,d)=Floor(n/F(d+1)), with F denoting the Fibonacci numbers (A000045).
0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..3120
Crossrefs
Programs
-
Scheme
(define (A099564 n) (let loop ((n n) (i 3)) (let* ((f (A000045 i)) (dig (modulo n f)) (next-n (/ (- n dig) f))) (if (zero? next-n) dig (loop next-n (+ 1 i)))))) ;; Standalone version: (define (A099564 n) (let loop ((n n) (f1 1) (f2 2)) (let* ((dig (modulo n f2)) (next-n (/ (- n dig) f2))) (if (zero? next-n) dig (loop next-n f2 (+ f1 f2)))))) ;; Antti Karttunen, Aug 23 2016
Extensions
a(0) = 0 prepended and the name corrected by Antti Karttunen, Aug 23 2016
Comments