cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099567 Riordan array (1/(1-x-x^3), 1/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Comments

Inverse matrix is A099569.
Subtriangle of the triangle in A144903. - Philippe Deléham, Dec 29 2013

Examples

			Rows begin:
   1;
   1,  1;
   1,  2,   1;
   2,  3,   3,   1;
   3,  5,   6,   4,   1;
   4,  8,  11,  10,   5,   1;
   6, 12,  19,  21,  15,   6,   1;
   9, 18,  31,  40,  36,  21,   7,   1;
  13, 27,  49,  71,  76,  57,  28,   8,   1;
  19, 40,  76, 120, 147, 133,  85,  36,   9,   1;
  28, 59, 116, 196, 267, 280, 218, 121,  45,  10,   1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
    [[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
    
  • Mathematica
    T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
    T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
  • SageMath
    @CachedFunction
    def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
    flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022

Formula

Number triangle T(n, k) = Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).
Columns have g.f. (1/(1-x-x^3))*(x/(1-x))^k.
Sum_{k=0..n} T(n, k) = A099568(n).
T(n,0) = A000930(n), T(n,n) = 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 0Philippe Deléham, Dec 29 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 3*x + 3*x^2/2! + x^3/3!) = 2 + 5*x + 11*x^2/2! + 21*x^3/3! + 36*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
From G. C. Greubel, Jul 27 2022: (Start)
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A000217(n-1), for n >= 2.
T(n, n-3) = A050407(n+1), for n >= 3.
T(2*n, n) = A144904(n+1), for n >= 1. (End)