cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099568 Expansion of (1-x)/((1-2*x)*(1-x-x^3)).

Original entry on oeis.org

1, 2, 4, 9, 19, 39, 80, 163, 330, 666, 1341, 2695, 5409, 10846, 21733, 43526, 87140, 174409, 349007, 698291, 1396988, 2794571, 5590014, 11181306, 22364485, 44731715, 89467453, 178940802, 357890245, 715793154, 1431604868, 2863236937
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Comments

Row sums of number triangle A099567.

Crossrefs

Cf. A099567.

Programs

  • Magma
    [n le 4 select Round(9^((n-1)/3)) else 3*Self(n-1) -2*Self(n-2) +Self(n-3) -2*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 26 2022
    
  • Mathematica
    LinearRecurrence[{3,-2,1,-2}, {1,2,4,9}, 40] (* G. C. Greubel, Jul 26 2022 *)
  • PARI
    Vec((1-x)/((1-2*x)*(1-x-x^3)) + O(x^40)) \\ Michel Marcus, Oct 18 2016
    
  • SageMath
    @CachedFunction
    def a(n): # a = A099568
        if (n<4): return round(9^(n/3))
        else: return 3*a(n-1) -2*a(n-2) + a(n-3) - 2*a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 26 2022

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - 2*a(n-4).
a(n) = Sum_{k=0..n} Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).