cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099569 Riordan array (((1+x)^2 - x^3)/(1+x)^3, 1/(1+x)).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 4, -5, 6, -4, 1, -7, 9, -11, 10, -5, 1, 11, -16, 20, -21, 15, -6, 1, -16, 27, -36, 41, -36, 21, -7, 1, 22, -43, 63, -77, 77, -57, 28, -8, 1, -29, 65, -106, 140, -154, 134, -85, 36, -9, 1, 37, -94, 171, -246, 294, -288, 219, -121, 45, -10, 1, -46, 131, -265, 417, -540, 582, -507, 340, -166, 55, -11, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Comments

Inverse matrix of A099567. Row sums are A099570.

Examples

			Rows begin as:
    1;
   -1,   1;
    1,  -2,    1;
   -2,   3,   -3,   1;
    4,  -5,    6,  -4,    1;
   -7,   9,  -11,  10,   -5,   1;
   11, -16,   20, -21,   15,  -6,   1;
  -16,  27,  -36,  41,  -36,  21,  -7,  1;
   22, -43,   63, -77,   77, -57,  28, -8,  1;
  -29,  65, -106, 140, -154, 134, -85, 36, -9,  1;
		

Crossrefs

Cf. A076540, A099570 (row sums), A099567.

Programs

  • Magma
    [n eq 0 select 1 else (-1)^(n+k)*(Binomial(n, k) + Binomial(n-1, k+2)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
    
  • Maple
    C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
    end proc:
    for n from 0 to 10 do
        seq((-1)^(n+k)*(C(n, n-k) + add((i-2)*C(n-i, n-k-i), i = 3..n)), k = 0..n);
    end do; # Peter Bala, Mar 21 2018
  • Mathematica
    T[n_, k_]:= (-1)^(n+k)*(Binomial[n, k] + Binomial[n-1, k+2]);
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    def A099569(n, k): return 1 if (n==0) else (-1)^(n+k)*(binomial(n, k) +binomial(n-1, k+2))
    flatten([[A099569(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022

Formula

Sum_{k=0..n} T(n, k) = A099570(n).
Columns have g.f. ((1+x)^2 - x^3)/(1+x)^3*(x/(1+x))^k.
T(n,k) = (-1)^(n+k)*(binomial(n, n-k) + Sum_{i = 3..n} (i-2)*binomial(n-i,n-k-i)), for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 21 2018
From G. C. Greubel, Jul 25 2022: (Start)
T(n, k) = (-1)^(n+k)*(binomial(n, k) + binomial(n-1, k+2)), with T(0, k) = 1.
T(2*n-1, n-1) = (-1)^n*A076540(n), n >= 1.
T(n, n-1) = -n. (End)