A099575 Number triangle T(n,k) = binomial(n + floor(k/2) + 1, n + 1), 0 <= k <= n.
1, 1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 6, 21, 1, 1, 7, 7, 28, 28, 1, 1, 8, 8, 36, 36, 120, 1, 1, 9, 9, 45, 45, 165, 165, 1, 1, 10, 10, 55, 55, 220, 220, 715, 1, 1, 11, 11, 66, 66, 286, 286, 1001, 1001, 1, 1, 12, 12, 78, 78, 364, 364, 1365, 1365, 4368, 1, 1, 13, 13, 91, 91, 455, 455, 1820, 1820, 6188, 6188
Offset: 0
Examples
Rows start: 1; 1, 1; 1, 1, 4; 1, 1, 5, 5; 1, 1, 6, 6, 21; 1, 1, 7, 7, 28, 28; 1, 1, 8, 8, 36, 36, 120; 1, 1, 9, 9, 45, 45, 165, 165; 1, 1, 10, 10, 55, 55, 220, 220, 715;
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (Rows 0..140, flattened)
Programs
-
Magma
[Binomial(n+1+Floor(k/2), n+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 24 2022
-
Maple
for n from 0 to 20 do seq(binomial(n+floor(k/2)+1,n+1),k=0..n) od; # Robert Israel, May 08 2018
-
Mathematica
Table[Binomial[n+Floor[k/2]+1, n+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 24 2022 *)
-
SageMath
flatten([[binomial(n+(k//2)+1, n+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 24 2022
Formula
Extensions
Definition simplified by Robert Israel, May 08 2018
Comments