cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099577 Diagonal sums of triangle A099575.

Original entry on oeis.org

1, 1, 2, 2, 6, 7, 13, 15, 38, 47, 85, 104, 245, 313, 558, 706, 1594, 2080, 3674, 4753, 10429, 13817, 24246, 31875, 68497, 91804, 160301, 213345, 451166, 610247, 1061413, 1426503, 2978230, 4058629, 7036859, 9533213, 19694622, 27007760
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-k+Floor(k/2)+1, 1+Floor(k/2))*(1+Floor(k/2))/(n-k+1): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    A099577 := proc(n)
        local a,k ;
        a := 0 ;
        for k from 0 to floor(n/2) do
            a := a+add(binomial(n-k+j,j),j=0..floor(k/2)) ;
        end do:
        a ;
    end proc:
    seq(A099577(n),n=0..50); # R. J. Mathar, Nov 28 2014
  • Mathematica
    Table[Sum[Binomial[n-k+Floor[k/2]+1, 1+Floor[k/2]]*(1+Floor[k/2])/(n-k+1), {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    [sum( binomial(n-k+(k//2)+1, 1+(k//2))*(1+(k//2))/(n-k+1) for k in (0..(n//2)) ) for n in (0..40)] # G. C. Greubel, Jul 24 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(k/2)} binomial(n-k+j, j).
a(n) = Sum_{k=0..floor(n/2)} binomial(n - k + floor(k/2) + 1, 1 + floor(k/2))*(1 + floor(k/2))/(n-k+1). - G. C. Greubel, Jul 24 2022