A099577 Diagonal sums of triangle A099575.
1, 1, 2, 2, 6, 7, 13, 15, 38, 47, 85, 104, 245, 313, 558, 706, 1594, 2080, 3674, 4753, 10429, 13817, 24246, 31875, 68497, 91804, 160301, 213345, 451166, 610247, 1061413, 1426503, 2978230, 4058629, 7036859, 9533213, 19694622, 27007760
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[(&+[Binomial(n-k+Floor(k/2)+1, 1+Floor(k/2))*(1+Floor(k/2))/(n-k+1): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
-
Maple
A099577 := proc(n) local a,k ; a := 0 ; for k from 0 to floor(n/2) do a := a+add(binomial(n-k+j,j),j=0..floor(k/2)) ; end do: a ; end proc: seq(A099577(n),n=0..50); # R. J. Mathar, Nov 28 2014
-
Mathematica
Table[Sum[Binomial[n-k+Floor[k/2]+1, 1+Floor[k/2]]*(1+Floor[k/2])/(n-k+1), {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Jul 24 2022 *)
-
SageMath
[sum( binomial(n-k+(k//2)+1, 1+(k//2))*(1+(k//2))/(n-k+1) for k in (0..(n//2)) ) for n in (0..40)] # G. C. Greubel, Jul 24 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(k/2)} binomial(n-k+j, j).
a(n) = Sum_{k=0..floor(n/2)} binomial(n - k + floor(k/2) + 1, 1 + floor(k/2))*(1 + floor(k/2))/(n-k+1). - G. C. Greubel, Jul 24 2022