cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099575 Number triangle T(n,k) = binomial(n + floor(k/2) + 1, n + 1), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 6, 21, 1, 1, 7, 7, 28, 28, 1, 1, 8, 8, 36, 36, 120, 1, 1, 9, 9, 45, 45, 165, 165, 1, 1, 10, 10, 55, 55, 220, 220, 715, 1, 1, 11, 11, 66, 66, 286, 286, 1001, 1001, 1, 1, 12, 12, 78, 78, 364, 364, 1365, 1365, 4368, 1, 1, 13, 13, 91, 91, 455, 455, 1820, 1820, 6188, 6188
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Original name was: "Number triangle T(n,k) = if(k<=n, Sum_{j=0..floor(k/2)} binomial(n+j,j), 0)."

Examples

			Rows start:
  1;
  1, 1;
  1, 1,  4;
  1, 1,  5,  5;
  1, 1,  6,  6, 21;
  1, 1,  7,  7, 28, 28;
  1, 1,  8,  8, 36, 36, 120;
  1, 1,  9,  9, 45, 45, 165, 165;
  1, 1, 10, 10, 55, 55, 220, 220, 715;
		

Crossrefs

Cf. A099573, A099576 (row sums), A099577 (diagonal sums), A099578 (main diagonal).

Programs

  • Magma
    [Binomial(n+1+Floor(k/2), n+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    for n from 0 to 20 do seq(binomial(n+floor(k/2)+1,n+1),k=0..n) od; # Robert Israel, May 08 2018
  • Mathematica
    Table[Binomial[n+Floor[k/2]+1, n+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    flatten([[binomial(n+(k//2)+1, n+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 24 2022

Formula

T(n, k) = binomial(n + floor(k/2) + 1, n + 1).
T(n, n) = A099578(n).
Sum_{k=0..n} T(n, k) = A099576(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099577(n).

Extensions

Definition simplified by Robert Israel, May 08 2018

A099574 Diagonal sums of triangle A099573.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 9, 11, 18, 23, 37, 48, 74, 97, 147, 195, 290, 387, 568, 763, 1108, 1495, 2152, 2915, 4167, 5662, 8047, 10962, 15506, 21168, 29825, 40787, 57280, 78448, 109870, 150657, 210521, 288969, 403020, 553677, 770963, 1059932, 1473898
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^4)/((1-x^2-x^4)*(1-x-x^4)) )); // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    a[n_]:= a[n]= Sum[Binomial[n-k-j, j], {k,0,Floor[n/2]}, {j,0,Floor[k/2]}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    @CachedFunction
    def A099574(n): return sum(sum(binomial(n-k-j, j) for j in (0..(k//2))) for k in (0..(n//2)))
    [A099574(n) for n in (0..40)] # G. C. Greubel, Jul 25 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(k/2)} binomial(n-k-j, j).
G.f.: (1-x)*(1+x)*(1+x^2) / ( (1-x-x^4)*(1-x^2-x^4) ). - R. J. Mathar, Nov 11 2014
From G. C. Greubel, Jul 25 2022: (Start)
a(n) = A003269(n+5) - A079977(n+3) - A079977(n+2).
a(n) = A003269(n+5) - A103609(n+5). (End)

A099576 Row sums of triangle A099575.

Original entry on oeis.org

1, 2, 6, 12, 35, 72, 210, 440, 1287, 2730, 8008, 17136, 50388, 108528, 319770, 692208, 2042975, 4440150, 13123110, 28614300, 84672315, 185122080, 548354040, 1201610592, 3562467300, 7821594872, 23206929840, 51037462560, 151532656696
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+Floor(k/2)+1, Floor(k/2)+1)*(1+Floor(k/2))/(n+1): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    seq(op([(1+n/(n+1))*binomial(3*n+1,n),2*binomial(3*n+3,n)]),n=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n + j, j], {k, 0, n}, {j, 0, k/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 06 2018 *)
    a[n_] := Binomial[2*n+2, n]*Hypergeometric2F1[-n, n+1, -2*n-2, -1]; Flatten[Table[a[n], {n, 0, 28}]] (* Detlef Meya, Dec 25 2023 *)
  • PARI
    a(n) = sum(k=0, n, sum(j=0, floor(k/2), binomial(n+j, j))); \\ Andrew Howroyd, Feb 13 2018
    
  • SageMath
    [sum( binomial(n+(k//2)+1, (k//2)+1)*(1+(k//2))/(n+1) for k in (0..n) ) for n in (0..40)] # G. C. Greubel, Jul 24 2022

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n+j, j).
Conjecture: 4*n*(n-1)*(3*n+2)*(n+2)*a(n) - 36*(n-1)*(n+1)*a(n-1) - 3*n*(3*n+5)*(3*n-1)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
From Robert Israel, May 08 2018: (Start)
a(2*n) = (1+n/(n+1))*binomial(3*n+1,n).
a(2*n+1) = 2*binomial(3*n+3,n).
The conjecture follows from this. (End)
a(n) = (1/(n+1))*Sum_{k=0..n} binomial(n + floor(k/2) + 1, floor(k/2) + 1)*(1 + floor(k/2)). - G. C. Greubel, Jul 24 2022
a(n) = binomial(2*n+2, n)*hypergeom([-n, n+1], [-2*n-2], -1). - Detlef Meya, Dec 25 2023
Showing 1-3 of 3 results.