cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099575 Number triangle T(n,k) = binomial(n + floor(k/2) + 1, n + 1), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 6, 21, 1, 1, 7, 7, 28, 28, 1, 1, 8, 8, 36, 36, 120, 1, 1, 9, 9, 45, 45, 165, 165, 1, 1, 10, 10, 55, 55, 220, 220, 715, 1, 1, 11, 11, 66, 66, 286, 286, 1001, 1001, 1, 1, 12, 12, 78, 78, 364, 364, 1365, 1365, 4368, 1, 1, 13, 13, 91, 91, 455, 455, 1820, 1820, 6188, 6188
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Original name was: "Number triangle T(n,k) = if(k<=n, Sum_{j=0..floor(k/2)} binomial(n+j,j), 0)."

Examples

			Rows start:
  1;
  1, 1;
  1, 1,  4;
  1, 1,  5,  5;
  1, 1,  6,  6, 21;
  1, 1,  7,  7, 28, 28;
  1, 1,  8,  8, 36, 36, 120;
  1, 1,  9,  9, 45, 45, 165, 165;
  1, 1, 10, 10, 55, 55, 220, 220, 715;
		

Crossrefs

Cf. A099573, A099576 (row sums), A099577 (diagonal sums), A099578 (main diagonal).

Programs

  • Magma
    [Binomial(n+1+Floor(k/2), n+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    for n from 0 to 20 do seq(binomial(n+floor(k/2)+1,n+1),k=0..n) od; # Robert Israel, May 08 2018
  • Mathematica
    Table[Binomial[n+Floor[k/2]+1, n+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    flatten([[binomial(n+(k//2)+1, n+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 24 2022

Formula

T(n, k) = binomial(n + floor(k/2) + 1, n + 1).
T(n, n) = A099578(n).
Sum_{k=0..n} T(n, k) = A099576(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099577(n).

Extensions

Definition simplified by Robert Israel, May 08 2018

A134565 Expansion of reversion of (x - 2*x^2) / (1 - x)^3.

Original entry on oeis.org

1, -1, 2, -3, 7, -12, 30, -55, 143, -273, 728, -1428, 3876, -7752, 21318, -43263, 120175, -246675, 690690, -1430715, 4032015, -8414640, 23841480, -50067108, 142498692, -300830572, 859515920, -1822766520, 5225264024, -11124755664, 31983672534, -68328754959
Offset: 1

Views

Author

Michael Somos, Nov 01 2007

Keywords

Examples

			G.f. = x - x^2 + 2*x^3 - 3*x^4 + 7*x^5 - 12*x^6 + 30*x^7 - 55*x^8 + 143*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = Quotient[n, 2]}, If[n < 1, 0, -(-1)^n Binomial[n + m, n - m] / (2 m + 1)]]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := If[n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[(x - 2 x^2) / (1 - x)^3, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Oct 16 2015 *)
    a[n_] := (-1)^(n-1)*Binomial[2*n, n-1]*Hypergeometric2F1[-n+1, n, -2*n, -1] / n; Flatten[Table[a[n], {n, 1, 32}]] (* Detlef Meya, Dec 26 2023 *)
  • PARI
    {a(n) = my( m = n\2); if( n<1, 0, -(-1)^n * binomial( n + m, n - m) / (2 * m + 1))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - 2 * x^2) / (1 - x)^3 + x * O(x^n) ), n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / ( 1 + 1 / serreverse( x - x^3 + x * O(x^n) )), n))};

Formula

Given g.f. A(x), then 1 = (1/A(x) + 1/A(-x)) / 2.
a(n) = -(-1)^n * binomial(n + m, n - m) / (2*m + 1) where m = floor(n/2) if n>0.
From Michael Somos, Apr 13 2012 (Start)
a(n) = -(-1)^n * A047749(n) unless n=0. a(2*n) = - A001764(n) unless n=0. a(2*n + 1) = A006013(n).
Reversion of A080956 with offset 1.
Hankel transform is A005161 omitting first 1.
n * a(n) = -(-1)^n * A099576(n-1). (End)
D-finite with recurrence +8*n*(n+1)*a(n) -36*n*(n-2)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Sep 24 2021
a(n) = (-1)^(n-1)*binomial(2*n, n-1)*hypergeom([-n+1, n], [-2*n], -1) / n. - Detlef Meya, Dec 26 2023
Showing 1-2 of 2 results.