A099606 Row sums of triangle A099605, in which row n equals the inverse Binomial transform of column n of the triangle A034870 of even-indexed rows of Pascal's triangle.
1, 4, 10, 48, 116, 560, 1352, 6528, 15760, 76096, 183712, 887040, 2141504, 10340096, 24963200, 120532992, 290992384, 1405035520, 3392055808, 16378294272, 39540700160, 190919389184, 460920178688, 2225519493120, 5372879343616
Offset: 0
Keywords
Examples
Sequence begins: {1*1, 2*2, 5*2, 12*4, 29*4, 70*8, 169*8, 408*16, ...}.
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 12, 0, -4).
Programs
-
PARI
a(n)=polcoeff((1+4*x-2*x^2)/(1-12*x^2+4*x^4)+x*O(x^n),n)
Formula
a(n) = Pell(n+1)*2^[(n+1)/2]. a(n) = 12*a(n-2) - 4*a(n-4) for n>=4. G.f.: (1+4*x-2*x^2)/(1-12*x^2+4*x^4).