cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099605 Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle A034870 of coefficients in successive powers of the trinomial (1+2*x+x^2), omitting leading zeros.

Original entry on oeis.org

1, 2, 2, 1, 5, 4, 4, 16, 20, 8, 1, 14, 41, 44, 16, 6, 50, 146, 198, 128, 32, 1, 27, 155, 377, 456, 272, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584, 512, 1, 65
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Comments

Row sums form A099606, where A099606(n) = Pell(n+1)*2^[(n+1)/2]. Central coefficients of even-indexed rows form A026000, where A026000(n) = T(2n,n), where T = Delannoy triangle (A008288). Antidiagonal sums form A099607.

Examples

			Rows begin:
[1],
[2,2],
[1,5,4],
[4,16,20,8],
[1,14,41,44,16],
[6,50,146,198,128,32],
[1,27,155,377,456,272,64],
[8,112,560,1408,1992,1616,704,128],
[1,44,406,1652,3649,4712,3568,1472,256],
[10,210,1572,6084,14002,20330,18880,10912,3584,512],
[1,65,870,5202,17469,36365,48940,42800,23552,7424,1024],...
The binomial transform of row 2 equals column 2 of A034870:
BINOMIAL[1,5,4] = [1,6,15,28,45,66,91,120,153,...].
The binomial transform of row 3 equals column 3 of A034870:
BINOMIAL[4,16,20,8] = [4,20,56,120,220,364,560,...].
The binomial transform of row 4 equals column 4 of A034870:
BINOMIAL[1,14,41,44,16] = [1,15,70,210,495,1001,...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(1 + 2*(y + 1)*x - (y + 1)*x^2)/(1 - (2*y + 1)*(2*y + 2)*x^2 + (y + 1)^2*x^4), {x, 0, 49}, {y, 0, 49}], x],
      y] // Flatten (* G. C. Greubel, Apr 14 2017 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: (1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4). T(n, n) = 2^n.
Showing 1-1 of 1 results.