cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A249997 Expansion of 1/((1-x)*(1+3*x)*(1-4*x)).

Original entry on oeis.org

1, 2, 15, 40, 221, 702, 3355, 11780, 52041, 193402, 817895, 3138720, 12953461, 50618102, 206059635, 813476860, 3286192481, 13047914802, 52482224575, 209057202200, 838843897101, 3347530323502, 13413657088715, 53584020970740, 214547906035321, 857556157684202
Offset: 0

Views

Author

Alex Ratushnyak, Dec 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [((-1)^n*3^(n+3) +4^(n+3) -7)/84: n in [0..50]]; // G. C. Greubel, Jul 21 2022
    
  • Mathematica
    LinearRecurrence[{2,11,-12}, {1,2,15}, 50] (* G. C. Greubel, Jul 21 2022 *)
  • SageMath
    [((-1)^n*3^(n+3) +4^(n+3) -7)/84 for n in (0..50)] # G. C. Greubel, Jul 21 2022

Formula

G.f.: 1/((1-x) * (1+3*x) * (1-4*x)).
a(n) = (-1)^n*3^(n+2)/28 + 4^(n+2)/21 -1/12. - R. J. Mathar, Jan 09 2015
E.g.f.: (1/84)*(27*exp(-3*x) - 7*exp(x) + 64*exp(4*x)). - G. C. Greubel, Jul 21 2022

A099622 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1)*(5/4)^k.

Original entry on oeis.org

0, 1, 8, 53, 316, 1785, 9744, 51997, 273092, 1417889, 7299160, 37334661, 190028748, 963565513, 4871514656, 24572321645, 123720601684, 622038982257, 3123938806632, 15674669614549, 78593250398300, 393845861293721
Offset: 0

Views

Author

Paul Barry, Oct 25 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1) * u^(n-k-1) * (v/u)^(k-1) has g.f. x^2/((1-u*x) * (1-u*x-v*x^2)) and satisfies the recurrence a(n) = 2*u*a(n-1) - (u^2 - v)*a(n-2) - u*v*a(n-3).

Crossrefs

Programs

  • Magma
    [(5^(n+2) -6*4^(n+1) -(-1)^n)/30: n in [0..40]]; // G. C. Greubel, Jul 22 2022
    
  • Mathematica
    LinearRecurrence[{8,-11,-20},{0,1,8},30] (* Harvey P. Dale, Nov 05 2017 *)
  • SageMath
    [(5^(n+2) -6*4^(n+1) -(-1)^n)/30 for n in (0..40)] # G. C. Greubel, Jul 22 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1)*(5/4)^k.
a(n) = 8*a(n-1) - 11*a(n-2) - 20*a(n-3).
G.f.: x^2/((1-4*x)*(1-4*x-5*x^2)) = x^2/((1+x)*(1-4*x)*(1-5*x)).
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = (1/30)*(5^(n+2) - 6*4^(n+1) - (-1)^n).
E.g.f.: (1/30)*(25*exp(5*x) - 24*exp(4*x) - exp(-x)). (End)

A249998 Expansion of 1/((1+x)*(1+3*x)*(1-4*x)).

Original entry on oeis.org

1, 0, 13, 12, 169, 312, 2341, 6084, 34177, 107184, 517309, 1803516, 8011225, 29653416, 125788117, 481629108, 1991086513, 7770635808, 31663673965, 124911303660, 504875391241, 2003811035160, 8062315730053, 32108048151972, 128855836912609, 514152414736272, 2060422457687581
Offset: 0

Views

Author

Alex Ratushnyak, Dec 28 2014

Keywords

Crossrefs

Formula

a(n) = (-1)^n*3^(n+2)/14 + 4^(n+2)/35 - (-1)^n/10. - R. J. Mathar, Jan 09 2015
Showing 1-3 of 3 results.