A099622 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1)*(5/4)^k.
0, 1, 8, 53, 316, 1785, 9744, 51997, 273092, 1417889, 7299160, 37334661, 190028748, 963565513, 4871514656, 24572321645, 123720601684, 622038982257, 3123938806632, 15674669614549, 78593250398300, 393845861293721
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-11,-20).
Programs
-
Magma
[(5^(n+2) -6*4^(n+1) -(-1)^n)/30: n in [0..40]]; // G. C. Greubel, Jul 22 2022
-
Mathematica
LinearRecurrence[{8,-11,-20},{0,1,8},30] (* Harvey P. Dale, Nov 05 2017 *)
-
SageMath
[(5^(n+2) -6*4^(n+1) -(-1)^n)/30 for n in (0..40)] # G. C. Greubel, Jul 22 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1)*(5/4)^k.
a(n) = 8*a(n-1) - 11*a(n-2) - 20*a(n-3).
G.f.: x^2/((1-4*x)*(1-4*x-5*x^2)) = x^2/((1+x)*(1-4*x)*(1-5*x)).
From G. C. Greubel, Jul 22 2022: (Start)
a(n) = (1/30)*(5^(n+2) - 6*4^(n+1) - (-1)^n).
E.g.f.: (1/30)*(25*exp(5*x) - 24*exp(4*x) - exp(-x)). (End)
Comments