A099636 a(n) = gcd(sum of distinct prime factors of n, product of distinct prime factors of n).
1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 10, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 10, 61, 1, 1, 2, 1, 2, 67, 1, 1, 14, 71, 1, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 6, 1, 1, 1, 1, 89, 10, 1, 1, 1
Offset: 1
Keywords
Examples
n=84: a(84) = gcd(2*3*7, 2+3+7) = gcd(42, 12) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[Plus @@ pf, Times @@ pf]]; Table[ f[n], {n, 93}] (* Robert G. Wilson v, Nov 04 2004 *)
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947 A008472(n) = vecsum(factor(n)[, 1]); \\ From A008472 A099636(n) = gcd(A007947(n), A008472(n));
Formula
Extensions
Name clarified by Antti Karttunen, Feb 01 2021