cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099637 Numbers such that gcd(Sum,n) = A099635 and gcd(Sum,Product) = A099636 are not identical. Sum and Product here are the sum and product of all distinct prime factors of n.

Original entry on oeis.org

84, 132, 168, 228, 234, 252, 260, 264, 276, 308, 336, 340, 372, 396, 456, 468, 504, 516, 520, 528, 532, 552, 558, 564, 580, 588, 616, 644, 672, 680, 684, 702, 708, 740, 744, 756, 792, 804, 820, 828, 836, 852, 855, 868, 884, 912, 936, 948, 996, 1008, 1012, 1032
Offset: 1

Views

Author

Labos Elemer, Oct 28 2004

Keywords

Comments

Of the first million integers, 75811 (of which 6300 are odd) belong to this sequence. - Robert G. Wilson v, Nov 04 2004
All terms have at least 3 distinct prime factors, and at least 4 prime factors counted with multiplicity. - Robert Israel, Aug 05 2024

Examples

			84 is here because its factor list = {2,3,7} and sum = 2 + 3 + 7 = 12, product = 2*3*7 = 42, gcd(12,84) = 12, gcd(12,42) = 6 != 12.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,s,p,t;
      F:= numtheory:-factorset(n);
      s:= convert(F,`+`);
      p:= convert(F,`*`);
      igcd(s,n) <> igcd(s,p)
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Aug 05 2024
  • Mathematica
    <Robert G. Wilson v, Nov 04 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 04 2004

A014963 Exponential of Mangoldt function M(n): a(n) = 1 unless n is a prime or prime power, in which case a(n) = that prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

There are arbitrarily long runs of ones (Sierpiński). - Franz Vrabec, Sep 26 2005
a(n) is the smallest positive integer such that n divides Product_{k=1..n} a(k), for all positive integers n. - Leroy Quet, May 01 2007
For n>1, resultant of the n-th cyclotomic polynomial with the 1st cyclotomic polynomial x-1. - Ralf Stephan, Aug 14 2013
A368749(n) is the smallest prime p such that the interval [a(p), a(q)] contains n 1's; q = nextprime(p), n >= 0. - David James Sycamore, Mar 21 2024

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 17.7.
  • I. Vardi, Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 146-147, 152-153 and 249, 1991.

Crossrefs

Apart from initial 1, same as A020500. With ones replaced by zeros, equal to A120007.
Cf. A003418, A007947, A008683, A008472, A008578, A048671 (= n/a(n)), A072107 (partial sums), A081386, A081387, A099636, A100994, A100995, A140255 (inverse Mobius transform), A140254 (Mobius transform), A297108, A297109, A340675, A000027, A348846, A368749.
First column of A140256. Row sums of triangle A140581.
Cf. also A140579, A140580 (= n*a(n)).

Programs

  • Haskell
    a014963 1 = 1
    a014963 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf
              | otherwise = 1
              where spf = a020639 n
    -- Reinhard Zumkeller, Sep 09 2011
    
  • Maple
    a := n -> if n < 2 then 1 else numtheory[factorset](n); if 1 < nops(%) then 1 else op(%) fi fi; # Peter Luschny, Jun 23 2009
    A014963 := n -> n/ilcm(op(numtheory[divisors](n) minus {1,n}));
    seq(A014963(i), i=1..69); # Peter Luschny, Mar 23 2011
    # The following is Nowicki's LCM-Transform - N. J. A. Sloane, Jan 09 2024
    LCMXFM:=proc(a)  local p,q,b,i,k,n:
    if whattype(a) <> list then RETURN([]); fi:
    n:=nops(a):
    b:=[a[1]]: p:=[a[1]];
    for i from 2 to n do q:=[op(p),a[i]]; k := lcm(op(q))/lcm(op(p));
    b:=[op(b),k]; p:=q;; od:
    RETURN(b); end:
    # Alternative, to be called by 'seq' as shown, not for a single n.
    a := proc(n) option remember; local i; global f; f := ifelse(n=1, 1, f*n);
    iquo(f, mul(a(i)^iquo(n, i), i=1..n-1)) end: seq(a(n), n=1..95); # Peter Luschny, Apr 05 2025
  • Mathematica
    a[n_?PrimeQ] := n; a[n_/;Length[FactorInteger[n]] == 1] := FactorInteger[n][[1]][[1]]; a[n_] := 1; Table[a[n], {n, 95}] (* Alonso del Arte, Jan 16 2011 *)
    a[n_] := Exp[ MangoldtLambda[n]]; Table[a[n], {n, 95}] (* Jean-François Alcover, Jul 29 2013 *)
    Ratios[LCM @@ # & /@ Table[Range[n], {n, 100}]] (* Horst H. Manninger, Mar 08 2024 *)
    Table[Which[PrimeQ[n],n,PrimePowerQ[n],Surd[n,FactorInteger[n][[-1,2]]],True,1],{n,100}] (* Harvey P. Dale, Mar 01 2025 *)
  • PARI
    A014963(n)=
    {
        local(r);
        if( isprime(n), return(n));
        if( ispower(n,,&r) && isprime(r), return(r) );
        return(1);
    }  \\ Joerg Arndt, Jan 16 2011
    
  • PARI
    a(n)=ispower(n,,&n);if(isprime(n),n,1) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    from sympy import factorint
    def A014963(n):
        y = factorint(n)
        return list(y.keys())[0] if len(y) == 1 else 1
    print([A014963(n) for n in range(1, 71)]) # Chai Wah Wu, Sep 04 2014
  • Sage
    def A014963(n) : return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))
    [A014963(n) for n in (1..50)]  # Peter Luschny, Feb 02 2012
    
  • Sage
    def a(n):
        if n == 1: return 1
        return prod(1 - E(n)**k for k in ZZ(n).coprime_integers(n+1))
    [a(n) for n in range(1, 14)] # F. Chapoton, Mar 17 2020
    

Formula

a(n) = A003418(n) / A003418(n-1) = lcm {1..n} / lcm {1..n-1}. [This is equivalent to saying that this sequence is the LCM-transform (as defined by Nowicki, 2013) of the positive integers. - David James Sycamore, Jan 09 2024.]
a(n) = 1/Product_{d|n} d^mu(d) = Product_{d|n} (n/d)^mu(d). - Vladeta Jovovic, Jan 24 2002
a(n) = gcd( C(n+1,1), C(n+2,2), ..., C(2n,n) ) where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003
a(n) = gcd(C(n,1), C(n+1,2), C(n+2,3), ...., C(2n-2,n-1)), where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003; corrected by Ant King, Dec 27 2005
Note: a(n) != gcd(A008472(n), A007947(n)) = A099636(n), GCD of rad(n) and sopf(n) (this fails for the first time at n=30), since a(30) = 1 but gcd(rad(30), sopf(30)) = gcd(30,10) = 10.
a(n)^A100995(n) = A100994(n). - N. J. A. Sloane, Feb 20 2005
a(n) = Product_{k=1..n-1, if(gcd(n, k)=1, 1-exp(2*Pi*i*k/n), 1)}, i=sqrt(-1); a(n) = n/A048671(n). - Paul Barry, Apr 15 2005
Sum_{n>=1} (log(a(n))-1)/n = -2*A001620 [Bateman Manuscript Project Vol III, ed. by Erdelyi et al.]. - R. J. Mathar, Mar 09 2008
n*a(n) = A140580(n) = n^2/A048671(n) = A140579 * [1,2,3,...]. - Gary W. Adamson, May 17 2008
a(n) = (2*Pi)^phi(n) / Product_{gcd(n,k)=1} Gamma(k/n)^2 (for n > 1). - Peter Luschny, Aug 08 2009
a(n) = A166140(n) / A166142(n). - Mats Granvik, Oct 08 2009
a(n) = GCD of rows in A167990. - Mats Granvik, Nov 16 2009
a(n) = A010055(n)*(A007947(n) - 1) + 1. - Reinhard Zumkeller, Mar 26 2010
a(n) = 1 + (A007947(n)-1) * floor(1/A001221(n)), for n>1. - Enrique Pérez Herrero, Jun 01 2011
a(n) = Product_{k=1..n-1} if(gcd(k,n)=1, 2*sin(Pi*k/n), 1). - Peter Luschny, Jun 09 2011
a(n) = exp(Sum_{k>=1} A191898(n,k)/k) for n>1 (conjecture). - Mats Granvik, Jun 19 2011
Dirichlet g.f.: Sum_{n>0} e^Lambda(n)/n^s = Zeta(s) + Sum_{p prime} Sum_{k>0} (p-1)/p^(k*s) = Zeta(s) - ppzeta(s) + Sum(p prime, p/(p^s-1)); for a ppzeta definition see A010055. - Enrique Pérez Herrero, Jan 19 2013
a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} moebius(d)/d^(s-1)) for n>1. - Mats Granvik, Jul 31 2013
a(n) = gcd_{k=1..n-1} binomial(n,k) for n > 1, see A014410. - Michel Marcus, Dec 08 2015 [Corrected by Jinyuan Wang, Mar 20 2020]
a(n) = 1 + Sum_{k=2..n} (k-1)*A010051(k)*(floor(k^n/n) - floor((k^n - 1)/n)). - Anthony Browne, Jun 16 2016
The Dirichlet series for log(a(n)) = Lambda(n) is given by the logarithmic derivative of the zeta function -zeta'(s)/zeta(s). - Mats Granvik, Oct 30 2016
a(n) = A008578(1+A297109(n)), For all n >= 1, Product_{d|n} a(d) = n. - Antti Karttunen, Feb 01 2021
Product_{k=1..floor(n/2)} Product_{j=1..floor(n/k)} a(j) = n!. - Ammar Khatab, Jan 28 2025

Extensions

Additional reference from Eric W. Weisstein, Jun 29 2008

A082299 Greatest common divisor of n and its sum of prime factors (with repetition).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 8, 17, 2, 19, 1, 1, 1, 23, 3, 5, 1, 9, 1, 29, 10, 31, 2, 1, 1, 1, 2, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 2, 1, 1, 53, 1, 1, 1, 1, 1, 59, 12, 61, 1, 1, 4, 1, 2, 67, 1, 1, 14, 71, 12, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 14, 1, 1, 1, 1, 89, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

For n > 4, a(n) = n iff n is prime.

Examples

			a(100) = GCD(2*2*5*5,2+2+5+5) = GCD(2*2*5,2*7) = 2;
a(200) = GCD(2*2*2*5*5,2+2+2+5+5) = GCD(2*2*2*5,2*2*2*2) = 8.
		

Crossrefs

Cf. A001414, A082300 (positions of ones), A082343, A082344.
Cf. also A099635, A099636.

Programs

Formula

a(n) = gcd(n, A001414(n)).
a(n) = n / A082344(n) = A001414(n) / A082343(n). - Antti Karttunen, Feb 01 2021

A099635 a(n) = gcd(sum of all prime factors of n, n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 10, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 10, 61, 1, 1, 2, 1, 2, 67, 1, 1, 14, 71, 1, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 12, 1, 1, 1, 1, 89, 10, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 28 2004

Keywords

Comments

a(n) = n iff n is prime. - Robert Israel, Mar 29 2015

Examples

			a(25) = gcd(5,25) = 5.
		

Crossrefs

Programs

  • Maple
    seq(igcd(n, convert(numtheory:-factorset(n),`+`)), n = 1 .. 1000); # Robert Israel, Mar 29 2015
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := GCD[Plus @@ PrimeFactors[n], n]; Table[ f[n], {n, 93}] (* Robert G. Wilson v, Nov 04 2004 *)

A340677 a(n) = A007947(n) / gcd(A007947(n), A008472(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 3, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 7, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 3, 1, 62, 21, 1, 65, 33, 1, 34, 69, 5, 1, 6, 1, 74, 15, 38, 77, 13, 1, 10, 1, 82, 1, 7, 85, 86, 87, 22, 1, 3, 91, 46, 93
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Cf. A000961 (positions of ones), A006881, A007947, A008472, A099636, A340678.
Cf. also A082344.

Programs

Formula

a(n) = A007947(n) / A099636(n) = A007947(n) / gcd(A007947(n), A008472(n)).
a(n) = 1 iff n is power of prime (A000961). - Bernard Schott, Feb 01 2021
a(A006881(n)) = A006881(n). - Bernard Schott and Antti Karttunen, Feb 01 2021

A340678 a(n) = A008472(n) / gcd(A007947(n), A008472(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 1, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 2, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 1, 1, 33, 10, 1, 18, 8, 1, 19, 26, 1, 1, 5, 1, 39, 8, 21, 18, 3, 1, 7, 1, 43, 1, 2, 22, 45, 32, 13, 1, 1, 20, 25, 34, 49, 24, 5, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A008472(n) / A099636(n) = A008472(n) / gcd(A007947(n), A008472(n)).
Showing 1-6 of 6 results.