cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099637 Numbers such that gcd(Sum,n) = A099635 and gcd(Sum,Product) = A099636 are not identical. Sum and Product here are the sum and product of all distinct prime factors of n.

Original entry on oeis.org

84, 132, 168, 228, 234, 252, 260, 264, 276, 308, 336, 340, 372, 396, 456, 468, 504, 516, 520, 528, 532, 552, 558, 564, 580, 588, 616, 644, 672, 680, 684, 702, 708, 740, 744, 756, 792, 804, 820, 828, 836, 852, 855, 868, 884, 912, 936, 948, 996, 1008, 1012, 1032
Offset: 1

Views

Author

Labos Elemer, Oct 28 2004

Keywords

Comments

Of the first million integers, 75811 (of which 6300 are odd) belong to this sequence. - Robert G. Wilson v, Nov 04 2004
All terms have at least 3 distinct prime factors, and at least 4 prime factors counted with multiplicity. - Robert Israel, Aug 05 2024

Examples

			84 is here because its factor list = {2,3,7} and sum = 2 + 3 + 7 = 12, product = 2*3*7 = 42, gcd(12,84) = 12, gcd(12,42) = 6 != 12.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,s,p,t;
      F:= numtheory:-factorset(n);
      s:= convert(F,`+`);
      p:= convert(F,`*`);
      igcd(s,n) <> igcd(s,p)
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Aug 05 2024
  • Mathematica
    <Robert G. Wilson v, Nov 04 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 04 2004

A082299 Greatest common divisor of n and its sum of prime factors (with repetition).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 8, 17, 2, 19, 1, 1, 1, 23, 3, 5, 1, 9, 1, 29, 10, 31, 2, 1, 1, 1, 2, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 2, 1, 1, 53, 1, 1, 1, 1, 1, 59, 12, 61, 1, 1, 4, 1, 2, 67, 1, 1, 14, 71, 12, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 14, 1, 1, 1, 1, 89, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

For n > 4, a(n) = n iff n is prime.

Examples

			a(100) = GCD(2*2*5*5,2+2+5+5) = GCD(2*2*5,2*7) = 2;
a(200) = GCD(2*2*2*5*5,2+2+2+5+5) = GCD(2*2*2*5,2*2*2*2) = 8.
		

Crossrefs

Cf. A001414, A082300 (positions of ones), A082343, A082344.
Cf. also A099635, A099636.

Programs

Formula

a(n) = gcd(n, A001414(n)).
a(n) = n / A082344(n) = A001414(n) / A082343(n). - Antti Karttunen, Feb 01 2021

A099636 a(n) = gcd(sum of distinct prime factors of n, product of distinct prime factors of n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 10, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 10, 61, 1, 1, 2, 1, 2, 67, 1, 1, 14, 71, 1, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 6, 1, 1, 1, 1, 89, 10, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 28 2004

Keywords

Examples

			n=84: a(84) = gcd(2*3*7, 2+3+7) = gcd(42, 12) = 6.
		

Crossrefs

Differs from related A099635 for the first time at n=84, where a(84) = 6, while A099635(84) = 12.
Differs from A014963 for the first time at n=30, where a(30) = 10, while A014963(30) = 1.

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[Plus @@ pf, Times @@ pf]]; Table[ f[n], {n, 93}] (* Robert G. Wilson v, Nov 04 2004 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A008472(n) = vecsum(factor(n)[, 1]); \\ From A008472
    A099636(n) = gcd(A007947(n), A008472(n));

Formula

From Antti Karttunen, Feb 01 2021: (Start)
a(n) = gcd(A007947(n), A008472(n)).
a(n) = A007947(n) / A340677(n) = A008472(n) / A340678(n).
(End)

Extensions

Name clarified by Antti Karttunen, Feb 01 2021
Showing 1-3 of 3 results.