cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A124167 a(n) = 10*(10^n-1).

Original entry on oeis.org

0, 90, 990, 9990, 99990, 999990, 9999990, 99999990, 999999990, 9999999990, 99999999990, 999999999990, 9999999999990, 99999999999990, 999999999999990, 9999999999999990, 99999999999999990, 999999999999999990
Offset: 0

Views

Author

Zerinvary Lajos, Dec 02 2006

Keywords

Comments

a(n - 1) is the maximum difference between an n-digit number (written in base 10, nonzero leading digit) and the product of its digits. For n>1, it is also a number meeting that bound. See A070565. - Devin Akman, Apr 17 2019

Crossrefs

Partial sums give 10*A099676.

Programs

  • GAP
    List([0..20], n-> 10*(10^n -1)); # G. C. Greubel, Jun 30 2019
  • Magma
    [10*(10^n -1): n in [0..20]]; // G. C. Greubel, Jun 30 2019
    
  • Maple
    a:=n->sum (10^(n-j+2)-10^(n-j+1),j=0..n): seq(a(n),n=0..20);
  • Mathematica
    Array[10 (10^# - 1) &, 20, 0] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    vector(20, n, n--; 10*(10^n -1)) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [10*(10^n -1) for n in (0..20)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n) = 10*A002283(n).
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = 90*A002275(n).
a(n) = 11*a(n-1) - 10*a(n-2).
G.f.: 10*(1/(1-10*x) - 1/(1-x)).
E.g.f.: 10*(exp(10*x) - exp(x)). (End)
Showing 1-1 of 1 results.