cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100026 Consider all (2n+1)-digit palindromic primes of the form 10...0M0...01 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.

Original entry on oeis.org

0, 3, 3, 3, 5, 8, 323, 5, 8, 212, 3, 161, 8, 3, 242, 3, 8, 10901, 737, 161, 242, 333, 282, 6, 252, 474, 5, 12921, 8, 131, 18381, 6, 444, 6, 797, 606, 717, 15351, 464, 333, 626, 545, 13031, 161, 747, 191, 323, 636, 32523, 303, 282, 888, 686, 18981, 111, 15951, 12021
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Nov 20 2004

Keywords

Comments

Is this the same as "Longest palindromic proper substring of A100027(n) or A028989(n+1) that occurs only once in the decimal representation of A100027(n) or A028989(n+1), respectively"? - Felix Fröhlich, Apr 30 2022
A more formal definition may be a(n) = A004151(A028989(n+1) - 10^(2n) - 1) with the convention that A004151(0) = 0. Only in the unlikely situation that A080176 contains undiscovered primes will a(n) = 0 occur for n > 1. - Jeppe Stig Nielsen, Apr 04 2025

Crossrefs

The corresponding palindromic primes are shown in A100027.

Programs

  • Mathematica
    f[n_] := Block[{k = 0, t = Flatten[Join[{1}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 56}] (* Robert G. Wilson v, Nov 22 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 22 2004

A099744 Palindromes n such that 10n01 is a prime.

Original entry on oeis.org

3, 5, 6, 222, 282, 353, 434, 555, 626, 656, 747, 828, 858, 929, 939, 10301, 10601, 11411, 11711, 12821, 12921, 13431, 13731, 14141, 14241, 14741, 15951, 16161, 17171, 17771, 18381, 18981, 19191, 19491, 19991, 20402, 20702, 22022, 22322
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Maple
    read transforms; pal:=[]; for n from 0 to 8000 do if digrev(n) = n then pal:=[op(pal),n]; fi; od:
    t0:=[]; u0:=[]; for n from 1 to nops(pal) do m:=pal[n]; p0:="10"; p1:="01"; t1:=cat(p0,m,p1); t1:=convert(t1,decimal,10); if isprime(t1) then t0:=[op(t0),m]; u0:=[op(u0),t1]; fi; od: t0; # u0 gives A099746.
  • Mathematica
    p = Select[ Range[ 22322], # == FromDigits[ Reverse[ IntegerDigits[ # ]]] &]; Select[p, PrimeQ[ FromDigits[ Join[{1, 0}, IntegerDigits[ # ], {0, 1}]]] &] (* Robert G. Wilson v, Nov 20 2004 *)
    Select[Range[23000],PalindromeQ[#]&&PrimeQ[FromDigits[Join[{1,0},IntegerDigits[ #],{0,1}]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 26 2021 *)

Extensions

More terms from Robert G. Wilson v, Nov 19 2004
Showing 1-2 of 2 results.