cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099751 Number of ways to write n as differences of (-4)-gonal numbers. If pe(n):=1/2*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=-4.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 3, 2, 0, 2, 2, 2, 0, 2, 2, 3, 0, 1, 2, 2, 0, 2, 4, 2, 0, 4, 1, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 2, 3, 3, 0, 2, 2, 2, 0, 4, 4, 2, 0, 2, 2, 2, 0, 2, 5, 4, 0, 2, 2, 2, 0, 2, 2, 2, 0, 3, 2, 4, 0, 2, 6, 1, 0, 2, 2, 4, 0, 2, 4, 2, 0, 4, 2, 2, 0, 4, 4, 2, 0, 2, 3, 2, 0, 2, 4, 4
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 10 2004

Keywords

Examples

			G.f. = x + x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^8 + x^9 + 2*x^11 + x^12 + 2*x^13 + ...
a(5)=2 because there are two ways of differences: First pe(3)-pe(-2)=(-15)-(-20)=5 and second pe(1)-pe(2)=(1)-(-4)=5, for e=-4.
		

Crossrefs

Cf. A001227 for e in {3, -2, 6}, A048272 for e in {0, 1, 4, 8} and A035218 for e=-1.

Programs

  • Haskell
    a099751 n = product $ zipWith f (a027748_row n) (a124010_row n)
       where f 2 e = e - 1; f 3 e = 1; f _ e = e + 1
    -- Reinhard Zumkeller, Mar 20 2015
  • Maple
    res:=1; ifac:=op(ifactors(i))[2]; for pfac in ifac do; if pfac[1]=2 then res:=res*(pfac[2]-1); else if pfac[1]<>3 then res:=res*(pfac[2]+1); fi; fi; od; a(i):=res;
  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ Divisible[n, 4], -1, 1] Sum[ KroneckerSymbol[ -3, d] (-1)^Quotient[ d, 3], {d, Divisors@n}]]; (* Michael Somos, Mar 19 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2==0, (valuation(n, 2) -1) * a(n / 2^valuation(n, 2)), if( n%3==0, a(n / 3^valuation(n, 3)), numdiv(n)))) }; /* Michael Somos, Sep 20 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, (-1)^(n%4 == 0) * sumdiv( n, d, (-1)^(d\3) * kronecker( -3, d)))}; /* Michael Somos, Nov 16 2011 */
    

Formula

Multiplicative with a(2^e) = e-1 if e>0, a(3^e) = 1, a(p^e) = e+1 if p>3.
Moebius transform is period 12 sequence [ 1, -1, 0, 1, 1, 0, 1, 1, 0, -1, 1, 0, ...].
G.f.: Sum_{k>0} (x^k - x^(2*k) + x^(4*k) + x^(5*k) + x^(7*k) + x^(8*k) - x^(10*k) + x^(11*k)) / (1 - x^(12*k)). - Michael Somos, Sep 20 2005
a(3*n) = a(n). a(4*n + 2) = 0. - Michael Somos, Nov 16 2011
a(4*n) = A035191(n). - Michael Somos, Mar 19 2015
From Amiram Eldar, Nov 30 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 + 2^(1-2*s) - 2^(1-s))*(1 - 1/3^s).
Sum_{k=1..n} a(k) ~ n*log(n)/3 + (2*gamma - 1 + log(3)/2)*n/3, where gamma is Euler's constant (A001620). (End)