cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099769 Decimal expansion of Sum_{n >= 2} (-1)^n/log(n).

Original entry on oeis.org

9, 2, 4, 2, 9, 9, 8, 9, 7, 2, 2, 2, 9, 3, 8, 8, 5, 5, 9, 5, 9, 5, 7, 0, 1, 8, 1, 3, 5, 9, 5, 9, 0, 0, 5, 3, 7, 7, 3, 3, 1, 9, 3, 9, 7, 8, 8, 6, 9, 1, 9, 0, 7, 4, 7, 7, 9, 6, 3, 0, 4, 3, 7, 2, 5, 0, 7, 0, 0, 5, 4, 1, 7, 1, 1, 4, 3, 4, 6, 8, 9, 7, 9, 8, 9, 9, 1, 3, 4, 7, 6, 6, 4, 9, 4, 6, 9, 1, 9, 5, 3, 5, 7, 4, 1, 4, 5, 2, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2004

Keywords

Comments

A slowly converging series. The reference (R. E. Shafer) gives several methods for evaluating the sum.
Mathematica program derived from method #3 in the reference (R. E. Shafer). - Ryan Propper, Sep 25 2006
This alternating slowly convergent series may also be efficiently computed via a rapidly convergent integral (see my formula below). I used this formula and PARI to compute 1000 digits of it. - Iaroslav V. Blagouchine, May 11 2015

Examples

			0.9242998972229388559595701813595900537733193978869190...
		

References

  • C. C. Grosjean, An Euler-Maclaurin type asymptotic series expansion of the Sum_{n=2..oo} (-1)^n/ln(n), Simon Stevin, Vol. 65 (1991), pp. 31-55.

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(n), n=2..infinity),120); # Vaclav Kotesovec, May 11 2015
  • Mathematica
    Do[X = 2*i; T = Table[Table[0, {X}], {X}]; For[n = 2, n <= X, n++, T[[n, 2]] = Sum[(-1)^k/Log[k], {k, 2, n}]]; For[k = 2, k <= X, k++, For[n = 2, n <= X - k + 1, n++, T[[n, k+1]] = T[[n+1, k-1]] + 1/(T[[n+1, k]] - T[[n, k]])]]; Print[N[T[[2, X]], 50]], {i, 50}] (* Ryan Propper, Sep 25 2006 *)
    digits = 105; NSum[(-1)^n/Log[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 12 2013 *)
    1/(2*Log[2])+8*NIntegrate[ArcTan[x]/((Log[4+4*x^2]^2+4*ArcTan[x]^2)*Sinh[2*Pi*x]), {x, 0, Infinity}, WorkingPrecision -> 109] // RealDigits // First (* Jean-François Alcover, May 12 2015, after Iaroslav V. Blagouchine *)
  • PARI
    sumalt(n=2,(-1)^n/log(n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
    
  • PARI
    allocatemem(50000000);
      default(realprecision, 1100);  1/(2*log(2)) + intnum(x=0,1000, 8*atan(x)/((log(4+4*x^2)^2+4*atan(x)^2)*sinh(2*Pi*x))) \\ Iaroslav V. Blagouchine, May 11 2015

Formula

Equals 1/(2*log(2)) + 8*Integral_{x=0..infinity} arctan(x)/((log(4+4*x^2)^2+4*arctan(x)^2)*sinh(2*Pi*x)) dx. - Iaroslav V. Blagouchine, May 11 2015
From Amiram Eldar, Jun 29 2021: (Start)
Equals Integral_{x>=0} (1 - (1-2^(1-x))*zeta(x)) dx.
Equals Integral_{x>=0} (1 + Li(x, -1)) dx, where Li(s, z) is the polylogarithm function.
Both from Mathematics Stack Exchange. (End)

Extensions

a(9)-a(17) from Ryan Propper, Sep 25 2006
a(18)-a(104) from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007