cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A091812 Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/k.

Original entry on oeis.org

1, 5, 9, 8, 6, 8, 9, 0, 3, 7, 4, 2, 4, 3, 0, 9, 7, 1, 7, 5, 6, 9, 4, 7, 8, 7, 0, 3, 2, 4, 9, 1, 6, 5, 7, 0, 4, 9, 6, 2, 2, 2, 0, 2, 3, 7, 5, 6, 4, 5, 8, 7, 4, 2, 6, 7, 0, 8, 2, 4, 5, 2, 9, 6, 3, 9, 6, 5, 7, 0, 0, 2, 1, 8, 4, 0, 2, 9, 0, 0, 4, 6, 5, 9, 5, 5, 5, 0, 3, 4, 0, 3, 2, 0, 4, 6, 1, 8, 8, 2, 9, 4, 6, 3
Offset: 0

Views

Author

Benoit Cloitre, Mar 07 2004

Keywords

Comments

Equal to the derivative eta'(1) of the Dirichlet eta function eta(s) = Sum_{k>=1} (-1)^(k-1)/k^s = (1 - 2^(1-s))*zeta(s) at s = 1. - Jonathan Sondow, Dec 28 2011

Examples

			0.15986890374243097175694787032491657049622202375645874267082452963965...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.21, p. 168.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Overseas Publishers Association, Amsterdam, 1986, p. 746, section 5.5.1, formula 3.

Crossrefs

Programs

  • Maple
    gamma*log(2)-log(2)^2/2 ; evalf(%) ; # R. J. Mathar, Jun 10 2024
  • Mathematica
    RealDigits[EulerGamma*Log[2] - Log[2]^2/2, 10, 100][[1]] (* Amiram Eldar, Sep 12 2022 *)
    RealDigits[Limit[Derivative[1][DirichletEta][x], x -> 1], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
  • PARI
    Euler*log(2)-log(2)^2/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Equals gamma*log(2) - log(2)^2/2.
Equals -Sum_{k>=1} psi(k)/(k*2^k), where psi(x) is the digamma function. - Amiram Eldar, Sep 12 2022

A257812 Decimal expansion of Sum_{n>=2} (-1)^n/(n*log(n)).

Original entry on oeis.org

5, 2, 6, 4, 1, 2, 2, 4, 6, 5, 3, 3, 3, 1, 0, 4, 1, 0, 9, 3, 0, 6, 9, 6, 5, 0, 1, 4, 1, 1, 1, 3, 1, 4, 1, 3, 7, 2, 1, 7, 9, 0, 5, 9, 7, 8, 8, 7, 5, 5, 8, 5, 4, 0, 7, 4, 6, 9, 9, 5, 7, 0, 0, 8, 3, 3, 7, 8, 3, 2, 2, 3, 1, 3, 0, 2, 0, 8, 4, 4, 6, 9, 8, 4, 6, 3, 6, 2, 2, 7, 2, 9, 7, 3, 4, 6, 1, 5, 1, 7, 8, 8, 7, 6, 4, 9, 5, 5, 8
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges quite slowly. However, it can be efficiently computed via its integral representation (see formula below), which converges exponentially quickly. This formula and PARI were used to compute 1000 digits.

Examples

			0.5264122465333104109306965014111314137217905978875585...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/(n*log(n)), n=2..infinity), 120);
    evalf(1/(4*log(2))+2*(Int((2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)), x=0..infinity)), 120);
  • Mathematica
    NSum[(-1)^n/(n*Log[n]), {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> AlternatingSigns]
    1/(4*Log[2])+2*NIntegrate[(2*ArcTan[x]+x*Log[4+4*x^2])/((x^2+1)*Sinh[2*Pi*x]*(Log[4+4*x^2]^2+4*ArcTan[x]^2)), {x, 0,Infinity}, WorkingPrecision->120]
  • PARI
    default(realprecision,120); sumalt(n=2, (-1)^n/(n*log(n))) \\ Vaclav Kotesovec, May 10 2015
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/(4*log(2))+2*intnum(x=0, 1000, (2*atan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*atan(x)^2)*(x^2+1)))

Formula

Equals 1/(4*log(2)) + 2*Integral_{x=0..oo} (2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)) dx.

A257837 Decimal expansion of Sum_{n>=2} (-1)^n/log(2*n-1).

Original entry on oeis.org

5, 6, 3, 9, 9, 1, 4, 3, 9, 8, 2, 4, 2, 3, 5, 9, 1, 0, 8, 5, 8, 4, 2, 5, 4, 6, 3, 5, 8, 3, 0, 5, 1, 2, 7, 3, 6, 9, 6, 8, 9, 9, 5, 5, 4, 5, 2, 6, 8, 5, 4, 8, 1, 8, 4, 2, 7, 5, 3, 0, 7, 5, 2, 5, 5, 3, 6, 9, 2, 7, 6, 0, 5, 0, 0, 8, 9, 4, 9, 9, 3, 4, 9, 0, 9, 6, 7, 1, 0, 1, 2, 6, 9, 9, 3, 8, 2, 9, 2, 1, 4, 2, 8, 7, 8, 3, 9, 6, 8
Offset: 0

Views

Author

Keywords

Comments

This alternating series is a particular case of the Fatou series sin(alpha*n)/log(n) with alpha=Pi/2 and converges very slowly. However, it can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series.

Examples

			0.5639914398242359108584254635830512736968995545268548...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(2*n-1), n=2..infinity), 120);
    evalf(1/(2*log(3))+6*(Int(arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)), x=0..infinity)), 120);
  • Mathematica
    NSum[(-1)^n/Log[2*n-1], {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> "AlternatingSigns"]
    1/(2*Log[3])+6*NIntegrate[ArcTan[x]/((Log[9+9*x^2]^2+4*ArcTan[x]^2)*Sinh[3*Pi*x/2]), {x, 0,Infinity}, WorkingPrecision->120] (* Mathematica 5.1 evaluates correctly only first 17 digits. In later versions, all digits are correct. *)
  • PARI
    default(realprecision,120); sumalt(n=2, (-1)^n/log(2*n-1))
    
  • PARI
    allocatemem(50000000);
    default(realprecision,1200); 1/(2*log(3))+intnum(x=0,1000,6*atan(x)/((log(9+9*x^2)^2+4*atan(x)^2)*sinh(3*Pi*x/2)))

Formula

Equals 1/(2*log(3))+6*Integral_{x=0..infinity} arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)).

A257898 Decimal expansion of Sum_{n=2..infinity} (-1)^n/log(log(n)), negated.

Original entry on oeis.org

1, 1, 4, 7, 7, 9, 6, 8, 0, 1, 3, 9, 8, 7, 0, 7, 5, 9, 1, 1, 5, 0, 7, 7, 8, 8, 9, 6, 7, 5, 6, 7, 9, 6, 1, 9, 1, 6, 6, 5, 1, 8, 8, 6, 8, 4, 3, 2, 8, 7, 6, 5, 2, 3, 0, 3, 2, 3, 1, 4, 7, 6, 5, 5, 4, 6, 8, 5, 6, 2, 1, 0, 6, 1, 4, 7, 4, 7, 0, 4, 4, 8, 9, 6, 5, 5, 8, 2, 4, 0, 2, 2, 1, 2, 7, 6, 5, 8, 9, 3, 1, 6, 1, 7, 7, 5, 5, 8, 5
Offset: 2

Views

Author

Keywords

Comments

A very slowly convergent series, converging in virtue of Leibniz's rule.

Examples

			-11.47796801398707591150778896756796191665188684328765...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(log(n)), n = 2..infinity), 120);
  • Mathematica
    NSum[(-1)^n/Log[Log[n]], {n, 2, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200]
  • PARI
    default(realprecision, 120); sumalt(n=2, (-1)^n/log(log(n)))

A257960 Decimal expansion of Sum_{n>=3} (-1)^n/log(log(log(n))).

Original entry on oeis.org

2, 7, 7, 8, 6, 7, 4, 9, 8, 9, 6, 8, 4, 5, 6, 8, 1, 7, 2, 3, 0, 6, 4, 4, 9, 9, 4, 5, 7, 9, 0, 3, 1, 0, 1, 4, 9, 0, 6, 9, 3, 6, 4, 2, 1, 1, 4, 6, 6, 7, 6, 5, 8, 8, 8, 3, 9, 1, 0, 1, 9, 3, 3, 2, 5, 5, 1, 9, 0, 2, 7, 1, 3, 7, 0, 9, 9, 9, 2, 5, 5, 5, 0, 1, 2, 2, 7, 6, 9, 6, 8, 8, 3, 0, 9, 6, 8, 3, 3, 0, 6, 8, 4, 7, 6, 3, 0, 8, 3
Offset: 3

Views

Author

Keywords

Comments

An extremely slowly convergent series, converging in virtue of Leibniz's rule.

Examples

			277.8674989684568172306449945790310149069364211466765...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(log(log(n))), n = 3..infinity), 120); # Maple 12.0 computes this expression with no problems, but later versions of Maple may have some problems with it.
  • Mathematica
    N[NSum[(-1)^n/Log[Log[Log[n]]], {n, 3, Infinity}, AccuracyGoal -> 500, Method -> "AlternatingSigns", WorkingPrecision -> 1000], 119] (* Mathematica needs higher precision than usual to compute this series *)
  • PARI
    default(realprecision, 200); precision(sumalt(n=3, (-1)^n/log(log(log(n)))), 120) /* PARI needs higher precision than usual to compute this series */

A257964 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n + log(n)).

Original entry on oeis.org

7, 6, 9, 4, 0, 2, 1, 5, 0, 2, 8, 0, 8, 0, 0, 4, 8, 4, 1, 2, 2, 1, 2, 6, 9, 7, 1, 9, 4, 6, 0, 0, 5, 3, 1, 5, 5, 7, 6, 2, 0, 5, 5, 3, 2, 0, 3, 3, 5, 4, 3, 5, 8, 7, 7, 1, 5, 5, 6, 3, 4, 4, 4, 8, 1, 1, 1, 6, 2, 1, 5, 3, 7, 1, 4, 1, 0, 2, 9, 9, 9, 0, 9, 7, 0, 5, 4, 8, 0, 7, 3, 4, 1, 4, 1, 0, 0, 3, 7, 2, 0, 4, 3, 5, 5, 6, 7, 3, 3
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges relatively slowly, but can be efficiently computed via an integral representation, which converges exponentially fast (see my formula below). I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.

Examples

			0.769402150280800484122126971946005315576205532033543...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(n-1)/(n+ln(n)), n = 1..infinity), 120);
    evalf(1/2+int((x+arctan(x))/(sinh(Pi*x)*((1+(1/2)*ln(1+x^2))^2+(x+arctan(x))^2)), x = 0..infinity), 120);
  • Mathematica
    N[NSum[(-1)^(n-1)/(n+Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],120]
    N[1/2 + NIntegrate[(x+ArcTan[x])/(Sinh[Pi*x]*((1+1/2*Log[1+x^2])^2 + (x+ArcTan[x])^2)), {x, 0, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],120]
  • PARI
    default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n+log(n)))
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/2 + intnum(x=0, 1000, (x+atan(x))/(sinh(Pi*x)*((1+0.5*log(1+x^2))^2 + (x+atan(x))^2)))

Formula

Equals 1/2 + integral_{x=0..infinity} (x+arctan(x))/(sinh(Pi*x)*((1+1/2*log(1+x^2))^2 + (x+arctan(x))^2)).

A257972 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n - log(n)).

Original entry on oeis.org

5, 4, 2, 6, 6, 6, 7, 3, 2, 5, 7, 0, 2, 8, 2, 7, 5, 4, 2, 8, 8, 8, 5, 0, 7, 4, 7, 6, 3, 9, 6, 2, 4, 7, 4, 8, 7, 9, 1, 4, 2, 0, 3, 6, 3, 7, 6, 3, 0, 9, 2, 7, 2, 0, 0, 9, 5, 0, 7, 8, 6, 6, 0, 1, 3, 8, 1, 0, 1, 1, 7, 9, 9, 6, 4, 3, 2, 3, 3, 3, 6, 7, 3, 6, 3, 9, 8, 3, 4, 5, 7, 0, 2, 2, 3, 6, 5, 4, 2, 0, 4, 8, 2, 8, 6, 3, 8, 5, 5
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges quite slowly, but can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.

Examples

			0.542666732570282754288850747639624748791420363763092...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(n-1)/(n-log(n)), n = 1..infinity), 120);
    evalf(1/2+Int((x-arctan(x))/(sinh(Pi*x)*((1-(1/2)*log(1+x^2))^2+(x-arctan(x))^2)), x = 0..infinity), 120);
  • Mathematica
    N[NSum[(-1)^(n-1)/(n-Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],119]
    N[1/2 + NIntegrate[(x-ArcTan[x])/(Sinh[Pi*x]*((1-1/2*Log[1+x^2])^2 + (x-ArcTan[x])^2)), {x, 0, 1, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],119] (* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. *)
  • PARI
    default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n-log(n)))
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/2 + intnum(x=0,1, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=1,3, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=3,1000, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) /* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. */
    
  • Sage
    from mpmath import mp, nsum, inf
    mp.dps = 110; mp.pretty = True
    nsum(lambda n: (-1)^(n-1)/(n-log(n)), [1, inf], method='alternating') # Peter Luschny, May 17 2015

Formula

Equals 1/2 + integral_{x=0..infinity} (x-arctan(x))/(sinh(Pi*x)*((1-1/2*log(1+x^2))^2 + (x-arctan(x))^2)).

A168218 Decimal expansion of the Sum_{k=2..infinity} 1/(k^2*log(k)).

Original entry on oeis.org

6, 0, 5, 5, 2, 1, 7, 8, 8, 8, 8, 2, 6, 0, 0, 4, 4, 7, 6, 9, 9, 5, 4, 9, 0, 0, 5, 2, 0, 7, 2, 4, 0, 4, 4, 7, 3, 0, 3, 2, 3, 8, 8, 9, 8, 4, 5, 5, 0, 6, 5, 7, 8, 3, 3, 1, 1, 1, 4, 7, 5, 9, 0, 4, 2, 0, 6, 8, 9, 4, 1, 1, 9, 7, 8, 0, 8, 8, 6, 8, 1, 7, 6, 1, 1, 8, 3, 1, 2, 8, 4, 1, 9, 3, 0, 8, 9, 4, 0, 1, 9, 8, 6, 9, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2009

Keywords

Comments

Also the value of the integral of the fractional part of the Riemann zeta function from 2 to infinity. - Alexander Bock, Apr 01 2014

Examples

			equals 1/(4*log(2))+1/(9*log(3))+1/(16*log(4))+ .... + = 0.605521788882600447699549005207240447303238898..
		

Crossrefs

Programs

  • Mathematica
    (* Computation needs a few minutes for 105 digits *) digits = 105; NSum[ 1/(n^2*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[NIntegrate[Zeta[x] - 1, {x, 2, Infinity}, WorkingPrecision->110], 10, 100] (* Alexander Bock, Apr 01 2014 *)
  • PARI
    intnum(x=2,[oo,log(2)],zeta(x)-1) \\ Charles R Greathouse IV, Apr 01 2014
    
  • PARI
    suminf(k=2,1/k^2/log(k)) \\ Charles R Greathouse IV, Apr 01 2014

Formula

Equals Integral_{x>=2} (zeta(x) - 1) dx.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A331421 Decimal expansion of Sum_{n >= 2} (-1)^n/log_2(n).

Original entry on oeis.org

6, 4, 0, 6, 7, 5, 8, 6, 7, 7, 5, 1, 9, 2, 7, 2, 9, 1, 2, 6, 5, 6, 1, 6, 6, 1, 1, 7, 9, 1, 7, 7, 7, 7, 7, 1, 9, 4, 5, 0, 7, 4, 9, 7, 2, 0, 0, 1, 9, 6, 4, 5, 0, 1, 9, 1, 0, 5, 3, 7, 9, 5, 7, 5, 5, 0, 4, 0, 6, 1, 3, 1, 9, 0, 3, 3, 9, 0, 8, 0, 8, 8, 1, 1, 4, 2, 1
Offset: 0

Views

Author

Daniel Hoyt, Jan 16 2020

Keywords

Comments

A slowly converging series.

Examples

			0.64067586775192729126561661179177777...
		

Crossrefs

Programs

  • PARI
    sumalt(k=2, (-1)^k/log(k))*log(2) \\ Edited by M. F. Hasler, Jan 31 2020

Formula

Equals A002162 * A099769. - M. F. Hasler, Jan 31 2020

A345928 Decimal expansion of Integral_{x>=0} (zeta(x)-1) dx (negated).

Original entry on oeis.org

2, 4, 3, 2, 3, 8, 3, 4, 2, 8, 9, 0, 9, 8, 0, 7, 5, 5, 4, 1, 5, 0, 5, 9, 1, 3, 5, 4, 6, 5, 4, 6, 2, 3, 0, 7, 1, 7, 8, 3, 0, 4, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 29 2021

Keywords

Comments

Robinson (1980) conjectured and Newman and Widder (1981) proved that this integral is equal to the limit given in the Formula section.

Examples

			-0.2432383428909807554150591354654623071783049...
		

References

  • Murray S. Klamkin (ed.), Problems in Applied Mathematics: Selections from SIAM Review, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1990, pp. 281-282.

Crossrefs

Formula

Equals lim_{n->oo} (Sum_{k=2..n} 1/log(k) - Integral_{x=0..n} (1/log(x)) dx).
Showing 1-10 of 12 results. Next