cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A210593 Decimal expansion of the series limit of Sum_{k>=1} (-1)^k*log(k)/k^2.

Original entry on oeis.org

1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2012

Keywords

Comments

First derivative of the Dirichlet eta-function eta(s) at s=2.
Phatisena et al. misspell "Euler" and provide the wrong sign and an invalid 7th digit.

Examples

			0.101316578163504501886002882212242183659384776374911163334294247196204...
		

Crossrefs

Cf. A073002, A013661, A002162, A091812 (s=1), A375506 (s=3/2), A349220 (s=3), A349252 (s=4).

Programs

  • Maple
    1/2*log(2)*Zeta(2)+Zeta(1,2)/2 ; evalf(%) ;
  • Mathematica
    N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    (log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Decimal expansion of (log(2)*zeta(2) + zeta'(2)) / 2.

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 05 2013

A242494 Decimal expansion of Sum_{k > 0} (-1)^k*log(k)^2/k.

Original entry on oeis.org

0, 6, 5, 3, 7, 2, 5, 9, 2, 5, 5, 8, 8, 9, 8, 5, 9, 9, 1, 4, 6, 2, 0, 7, 3, 9, 9, 3, 8, 8, 2, 0, 1, 0, 5, 3, 2, 2, 8, 5, 8, 8, 1, 4, 9, 1, 9, 2, 9, 0, 9, 2, 0, 7, 2, 9, 7, 8, 2, 6, 6, 3, 4, 6, 0, 4, 8, 1, 8, 9, 8, 7, 3, 6, 1, 0, 4, 5, 3, 2, 9, 3, 6, 8, 6, 6, 2, 8, 9, 5, 4, 6, 4, 0, 2, 5, 6, 7, 0, 2, 4
Offset: 0

Views

Author

Jean-François Alcover, May 16 2014

Keywords

Examples

			0.065372592558898599146207399388201...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168.

Crossrefs

Cf. A091812.

Programs

  • Mathematica
    -Log[2]^3/3 + EulerGamma*Log[2]^2 +  StieltjesGamma[1]*Log[4] // RealDigits[#, 10, 100]& // First
  • PARI
    sumalt(k=1,(-1)^k*log(k)^2/k) \\ Charles R Greathouse IV, Mar 10 2016

Formula

sum(k>0, (-1)^k*log(k)^2/k) = -log(2)^3/3 + gamma*log(2)^2 + gamma(1)*log(4).

A265162 Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/sqrt(k).

Original entry on oeis.org

1, 9, 3, 2, 8, 8, 8, 3, 1, 6, 3, 9, 2, 8, 2, 7, 3, 8, 9, 6, 4, 6, 1, 5, 4, 5, 9, 3, 5, 5, 2, 3, 8, 1, 1, 4, 2, 9, 5, 2, 7, 0, 2, 2, 2, 5, 2, 9, 2, 2, 1, 9, 9, 2, 2, 9, 3, 6, 0, 4, 8, 1, 0, 3, 3, 4, 4, 0, 1, 6, 6, 6, 4, 4, 4, 4, 6, 8, 9, 8, 7, 3, 4, 9, 8, 6, 8, 0, 9, 2, 0, 8, 7, 7, 7, 8, 1, 6, 3, 6, 8, 4, 5, 7, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 03 2015

Keywords

Comments

Differentiation of Sum_{k>=1} (-1)^k/k^s = -(2^s-2)*zeta(s)/2^s with respect to s gives -Sum_{k>=1} (-1)^k*log(k)/k^s = -2^(1-s)*log(2)*zeta(s) - (1-2^(1-s))*zeta'(s), where zeta(.) and zeta'(.) are the Riemann zeta function and its derivative. - R. J. Mathar, Apr 17 2019, typo in the first formula corrected by Vaclav Kotesovec, Jan 11 2024

Examples

			0.1932888316392827389646154593552381142952702225292219922936048103344...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^k*log(k)/sqrt(k), k=1..infinity), 120);
  • Mathematica
    RealDigits[((3-Sqrt[2])*Log[2]/2 - (Sqrt[2]-1)*(2*EulerGamma + Pi + 2*Log[Pi])/4) * Zeta[1/2], 10, 106][[1]]
    RealDigits[DirichletEta'[1/2], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
  • PARI
    ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*Euler + Pi + 2*log(Pi))/4)* zeta(1/2) \\ G. C. Greubel, Apr 15 2018

Formula

Equals ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*gamma + Pi + 2*log(Pi))/4) * zeta(1/2), where gamma is the Euler-Mascheroni constant A001620.
A265162/A113024 = gamma/2 + Pi/4 - (1/2 + sqrt(2))*log(2) + log(Pi)/2.

A349220 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.

Original entry on oeis.org

0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 3.

Examples

			0.0597059061601953583634292662879256783169268731565...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021

Formula

Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.

A354295 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / (k+1).

Original entry on oeis.org

0, 9, 6, 6, 1, 4, 9, 3, 4, 7, 3, 2, 2, 2, 6, 8, 8, 7, 0, 1, 3, 5, 7, 1, 8, 2, 8, 6, 7, 7, 6, 6, 1, 5, 5, 0, 0, 5, 6, 3, 3, 8, 3, 1, 9, 4, 9, 6, 8, 3, 5, 5, 3, 5, 4, 7, 3, 1, 5, 6, 8, 0, 3, 8, 6, 1, 3, 2, 3, 8, 8, 5, 6, 5, 9, 8, 9, 6, 1, 7, 9, 1, 7, 1, 9, 3, 4, 3, 6, 0, 4, 8, 4, 8, 9, 8, 1, 7, 2, 7, 8, 1, 9, 8, 5, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2022

Keywords

Examples

			0.096614934732226887013571828677661550056338319496835535473156803861323...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 746, section 5.5.1, formula 4.

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*log(k)/(k + 1), k = 1..infinity), 105);
  • Mathematica
    N[NSum[(-1)^k*Log[k]/(k+1), {k, 1, Infinity}, WorkingPrecision -> 120, Method -> "AlternatingSigns"], 105]
  • PARI
    sumalt(k=1, (-1)^k*log(k)/(k+1))

A354450 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(2*k).

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 4, 4, 2, 7, 4, 3, 5, 1, 7, 6, 5, 8, 7, 3, 5, 3, 6, 8, 7, 6, 9, 6, 5, 0, 7, 8, 2, 8, 5, 5, 0, 5, 2, 1, 2, 7, 4, 0, 7, 1, 4, 4, 7, 7, 7, 5, 5, 1, 4, 7, 9, 4, 0, 5, 0, 9, 2, 8, 2, 5, 4, 5, 5, 0, 1, 3, 6, 4, 2, 9, 0, 6, 0, 8, 1, 5, 2, 6, 2, 8, 8, 6, 5, 6, 5, 1, 6, 2, 8, 6, 0, 0, 2, 8, 8, 9, 7, 9, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 30 2022

Keywords

Comments

Convergence of this sum is slow, but (1 - log(k)/k)^(2*k) can be expanded as 1/k^2 - log(k)^2/k^3 + (-4*log(k)^3 + 3*log(k)^4)/(6*k^4) + (-3*log(k)^4 + 4*log(k)^5 - log(k)^6)/(6*k^5) + ... and each of these summands can be evaluated exactly because Sum_{k>=1} log(k)^r/k^s is equal to the r-th derivative of zeta(s) * (-1)^r. For example, Sum_{k>=1} log(k)^2/k^3 = zeta''(3).

Examples

			1.40710442743517658735368769650782855052127407144777551479405092825455...
		

Crossrefs

Programs

  • Maple
    Digits := 120: ser := sort(convert(series((1-log(n)/n)^(2*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
  • Mathematica
    NSum[(1 - Log[n]/n)^(2*n), {n, 1, Infinity}, WorkingPrecision -> 100, NSumTerms -> 1000] (* only 74 digits are correct *)
  • PARI
    default(realprecision, 120); sumpos(k=1, (1 - log(k)/k)^(2*k))

A358789 Decimal expansion of Sum_{p prime, p>=3} (-1)^((p-1)/2)*log(p)/p, negated.

Original entry on oeis.org

5, 4, 5, 6, 8, 1, 2, 7, 2, 7, 9, 5, 1, 2, 7, 9, 0, 1, 4, 8, 9, 5, 3, 2, 3, 8, 3, 3, 8, 0, 0, 4, 0, 3, 8, 3, 4, 7, 5, 2, 5, 2, 8, 0, 5, 4, 1, 4, 2, 7, 4, 4, 6, 5, 4, 0, 7, 5, 9, 8, 6, 6, 3, 9, 2, 8, 8, 7, 3, 6, 5, 3, 1, 4, 8, 7, 2, 7, 2, 6, 4, 0, 9, 6, 2, 8, 7, 8, 6, 2, 1, 5, 1, 4, 1, 6, 1, 2, 3, 2, 3, 8, 8, 5, 7, 9, 2, 6, 6, 6, 6, 2, 1, 9, 0
Offset: 0

Views

Author

Artur Jasinski, Jan 03 2023

Keywords

Comments

Sum_{p prime} log(p)/p is divergent.

Examples

			-0.54568127279512790148953238338...
		

Crossrefs

Programs

  • Mathematica
    alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; beta[s_]:= (1 - 1/2^s) * Zeta[s] / DirichletBeta[s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * Limit[D[Log[alfa[(2*n + 1)*s]/beta[(2*n + 1)*s]], s], s -> 1], {n, 0, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jan 25 2023 *)

Formula

Limit_{N->oo} ((Sum_{p<=N prime == 3 (mod 4)} log(p)/p) - (Sum_{p<=N prime == 1 (mod 4)} log(p)/p)).

A271533 Decimal expansion of the derivative of the Dirichlet function eta(z) at z = -1.

Original entry on oeis.org

2, 6, 5, 2, 1, 4, 3, 7, 0, 9, 1, 4, 7, 0, 4, 3, 5, 1, 1, 6, 9, 3, 4, 8, 2, 7, 3, 5, 7, 5, 6, 1, 6, 4, 0, 5, 6, 0, 0, 2, 7, 5, 7, 6, 2, 8, 8, 5, 5, 2, 0, 2, 6, 6, 2, 9, 2, 6, 7, 3, 5, 8, 2, 5, 7, 4, 2, 8, 1, 2, 2, 5, 0, 0, 9, 8, 3, 3, 2, 7, 9, 7, 4, 3, 2, 8, 7, 5, 2, 5, 3, 3, 2, 0, 5, 3, 3, 7, 0, 7, 6, 7, 7, 9, 7
Offset: 0

Views

Author

Stanislav Sykora, Apr 09 2016

Keywords

Comments

This entry completes the values of the derivatives eta'(z) at z = 0,1,i,-1,-i (see crossrefs).

Examples

			0.265214370914704351169348273575616405600275762885520266292673582574...
		

Crossrefs

Cf. A074962, A256358 (eta'(0)), A091812 (eta'(1)), A271525 (real(eta'(i))), A271526 (-imag(eta'(i))) .

Programs

  • Mathematica
    RealDigits[3*Log[Glaisher] - Log[2]/3 - 1/4, 10, 120][[1]] (* G. C. Greubel, Apr 09 2016 *)
    RealDigits[DirichletEta'[-1], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    \\ Derivative of Dirichlet eta function (fails for z=1):
    derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
    derdireta(-1) \\ Evaluation

Formula

eta'(-1) = 3*log(A) - log(2)/3 - 1/4, where A = A074962 is the Glaisher-Kinkelin constant.

A349252 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

Original entry on oeis.org

0, 3, 3, 4, 7, 8, 8, 0, 4, 5, 7, 8, 5, 6, 5, 0, 6, 6, 3, 8, 5, 9, 5, 6, 8, 5, 4, 7, 8, 8, 7, 3, 7, 7, 9, 9, 7, 1, 3, 7, 5, 9, 7, 3, 0, 4, 0, 5, 7, 3, 4, 9, 7, 4, 8, 2, 8, 6, 6, 5, 7, 6, 4, 2, 8, 8, 6, 8, 3, 6, 2, 2, 5, 2, 7, 9, 5, 8, 8, 3, 8, 1, 0, 7, 9, 5, 3, 4, 7, 4, 7, 5, 8, 6, 5, 8, 6, 4, 8, 6, 2, 2, 8, 2, 6, 6, 5, 1, 1, 1, 1, 2, 1, 8, 5, 5, 1, 7, 9, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 4.

Examples

			0.0334788045785650663859568547887377997137597304057...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^4) \\ Michel Marcus, Nov 12 2021

Formula

Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.

A373207 Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k).

Original entry on oeis.org

1, 3, 7, 6, 7, 6, 6, 7, 3, 9, 0, 7, 4, 8, 8, 8, 2, 2, 6, 1, 2, 7, 1, 6, 5, 9, 4, 8, 2, 5, 0, 4, 1, 6, 2, 9, 9, 0, 8, 7, 1, 2, 4, 3, 9, 0, 3, 7, 9, 9, 2, 6, 4, 1, 7, 7, 1, 3, 3, 1, 1, 4, 6, 0, 8, 1, 8, 7, 8, 4, 8, 4, 2, 6, 3, 7, 1, 7, 0, 5, 2, 1, 9, 1, 7, 8, 2, 1, 0, 0, 4, 1, 8, 1, 9, 1, 3, 2, 4, 1, 0, 9, 4, 3, 5
Offset: 1

Views

Author

Amiram Eldar, May 28 2024

Keywords

Examples

			(2^(1/2)/1^1) * (2^(1/2)/3^(1/3)) * (4^(1/4)/3^(1/3)) * (4^(1/4)/5^(1/5)) * ...
1.37676673907488822612716594825041629908712439037992...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^(2*EulerGamma - Log[2]), 10, 120][[1]]
  • PARI
    2^(2*Euler - log(2))

Formula

Equals exp(2*eta'(1)) = exp(2*A091812), where eta is the Dirichlet eta function.
Equals 2^(2*gamma - log(2)), where gamma is Euler's constant (A001620).
Showing 1-10 of 13 results. Next