cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A115563 Decimal expansion of Sum_{n>=2} 1/(n*log(n)^2).

Original entry on oeis.org

2, 1, 0, 9, 7, 4, 2, 8, 0, 1, 2, 3, 6, 8, 9, 1, 9, 7, 4, 4, 7, 9, 2, 5, 7, 1, 9, 7, 6, 1, 6, 5, 5, 1, 3, 2, 6, 3, 8, 5, 5, 3, 1, 9, 8, 4, 3, 9, 4, 7, 4, 2, 0, 2, 2, 6, 4, 9, 9, 1, 5, 6, 0, 3, 1, 9, 2, 8, 1, 4, 6, 9, 4, 9, 3, 9, 1, 3, 6, 8, 7, 4, 1, 7, 7, 1, 6, 9, 2, 9, 1, 3, 7, 7, 1, 8, 6, 2, 3, 2, 1, 3, 5, 8, 3, 8, 7, 6, 6, 5, 3, 4, 7, 2, 6, 0, 9, 7, 3, 8, 9, 0, 3, 5, 7, 7, 9, 5, 0, 8, 6, 5, 9, 4, 8, 9, 4, 2, 4, 6, 5
Offset: 1

Views

Author

Pierre CAMI, Mar 11 2006

Keywords

Comments

Sum_{n>1} 1/(n*log(n)^2) is a tiny bit greater than (zeta(2))^(3/2) = (Pi^2 / 6)^(3/2) = 2.109709908063657.... - Daniel Forgues, Mar 30 2012
From Bernard Schott, Oct 03 2021: (Start)
Theorem: Bertrand series Sum_{n>=2} 1/(n*log(n)^q) is convergent iff q > 1 (for q = 3, 4, 5 see respectively A145419, A145420, A145421).
As H(n) ~ log(n), compare with A347145. (End)

Examples

			2.10974280123689197447925719761655132638553198439474202264991560319281...
		

Crossrefs

Cf. A137245, A257812. A097906 is a similar sum.

Programs

  • Mathematica
    digits = 150; NSum[1/(n*Log[n]^2), {n, 2, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] (* Vaclav Kotesovec, Mar 01 2016, after Jean-François Alcover *)
    maxiter = 20; nn = 10000; alfa = 2; bas = Sum[1/(k*Log[k]^alfa), {k, 2, nn}] + 1/((alfa - 1)*Log[nn + 1/2]^(alfa - 1)); sub = 0; Do[sub = sub + 1/4^s/(2*s + 1)! * NSum[(D[1/(x*Log[x]^alfa), {x, 2 s}]) /. x -> k, {k, nn + 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]; Print[bas - sub], {s, 1, maxiter}] (* Vaclav Kotesovec, Jun 12 2022 *)

Extensions

Removed incorrect speculations about relations to A097906 - R. J. Mathar, Oct 14 2010
More terms from Robert G. Wilson v, Dec 12 2012
Corrected a(55) and beyond, Vaclav Kotesovec, Mar 01 2016

A099769 Decimal expansion of Sum_{n >= 2} (-1)^n/log(n).

Original entry on oeis.org

9, 2, 4, 2, 9, 9, 8, 9, 7, 2, 2, 2, 9, 3, 8, 8, 5, 5, 9, 5, 9, 5, 7, 0, 1, 8, 1, 3, 5, 9, 5, 9, 0, 0, 5, 3, 7, 7, 3, 3, 1, 9, 3, 9, 7, 8, 8, 6, 9, 1, 9, 0, 7, 4, 7, 7, 9, 6, 3, 0, 4, 3, 7, 2, 5, 0, 7, 0, 0, 5, 4, 1, 7, 1, 1, 4, 3, 4, 6, 8, 9, 7, 9, 8, 9, 9, 1, 3, 4, 7, 6, 6, 4, 9, 4, 6, 9, 1, 9, 5, 3, 5, 7, 4, 1, 4, 5, 2, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2004

Keywords

Comments

A slowly converging series. The reference (R. E. Shafer) gives several methods for evaluating the sum.
Mathematica program derived from method #3 in the reference (R. E. Shafer). - Ryan Propper, Sep 25 2006
This alternating slowly convergent series may also be efficiently computed via a rapidly convergent integral (see my formula below). I used this formula and PARI to compute 1000 digits of it. - Iaroslav V. Blagouchine, May 11 2015

Examples

			0.9242998972229388559595701813595900537733193978869190...
		

References

  • C. C. Grosjean, An Euler-Maclaurin type asymptotic series expansion of the Sum_{n=2..oo} (-1)^n/ln(n), Simon Stevin, Vol. 65 (1991), pp. 31-55.

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(n), n=2..infinity),120); # Vaclav Kotesovec, May 11 2015
  • Mathematica
    Do[X = 2*i; T = Table[Table[0, {X}], {X}]; For[n = 2, n <= X, n++, T[[n, 2]] = Sum[(-1)^k/Log[k], {k, 2, n}]]; For[k = 2, k <= X, k++, For[n = 2, n <= X - k + 1, n++, T[[n, k+1]] = T[[n+1, k-1]] + 1/(T[[n+1, k]] - T[[n, k]])]]; Print[N[T[[2, X]], 50]], {i, 50}] (* Ryan Propper, Sep 25 2006 *)
    digits = 105; NSum[(-1)^n/Log[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 12 2013 *)
    1/(2*Log[2])+8*NIntegrate[ArcTan[x]/((Log[4+4*x^2]^2+4*ArcTan[x]^2)*Sinh[2*Pi*x]), {x, 0, Infinity}, WorkingPrecision -> 109] // RealDigits // First (* Jean-François Alcover, May 12 2015, after Iaroslav V. Blagouchine *)
  • PARI
    sumalt(n=2,(-1)^n/log(n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
    
  • PARI
    allocatemem(50000000);
      default(realprecision, 1100);  1/(2*log(2)) + intnum(x=0,1000, 8*atan(x)/((log(4+4*x^2)^2+4*atan(x)^2)*sinh(2*Pi*x))) \\ Iaroslav V. Blagouchine, May 11 2015

Formula

Equals 1/(2*log(2)) + 8*Integral_{x=0..infinity} arctan(x)/((log(4+4*x^2)^2+4*arctan(x)^2)*sinh(2*Pi*x)) dx. - Iaroslav V. Blagouchine, May 11 2015
From Amiram Eldar, Jun 29 2021: (Start)
Equals Integral_{x>=0} (1 - (1-2^(1-x))*zeta(x)) dx.
Equals Integral_{x>=0} (1 + Li(x, -1)) dx, where Li(s, z) is the polylogarithm function.
Both from Mathematics Stack Exchange. (End)

Extensions

a(9)-a(17) from Ryan Propper, Sep 25 2006
a(18)-a(104) from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007

A257837 Decimal expansion of Sum_{n>=2} (-1)^n/log(2*n-1).

Original entry on oeis.org

5, 6, 3, 9, 9, 1, 4, 3, 9, 8, 2, 4, 2, 3, 5, 9, 1, 0, 8, 5, 8, 4, 2, 5, 4, 6, 3, 5, 8, 3, 0, 5, 1, 2, 7, 3, 6, 9, 6, 8, 9, 9, 5, 5, 4, 5, 2, 6, 8, 5, 4, 8, 1, 8, 4, 2, 7, 5, 3, 0, 7, 5, 2, 5, 5, 3, 6, 9, 2, 7, 6, 0, 5, 0, 0, 8, 9, 4, 9, 9, 3, 4, 9, 0, 9, 6, 7, 1, 0, 1, 2, 6, 9, 9, 3, 8, 2, 9, 2, 1, 4, 2, 8, 7, 8, 3, 9, 6, 8
Offset: 0

Views

Author

Keywords

Comments

This alternating series is a particular case of the Fatou series sin(alpha*n)/log(n) with alpha=Pi/2 and converges very slowly. However, it can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series.

Examples

			0.5639914398242359108584254635830512736968995545268548...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(2*n-1), n=2..infinity), 120);
    evalf(1/(2*log(3))+6*(Int(arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)), x=0..infinity)), 120);
  • Mathematica
    NSum[(-1)^n/Log[2*n-1], {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> "AlternatingSigns"]
    1/(2*Log[3])+6*NIntegrate[ArcTan[x]/((Log[9+9*x^2]^2+4*ArcTan[x]^2)*Sinh[3*Pi*x/2]), {x, 0,Infinity}, WorkingPrecision->120] (* Mathematica 5.1 evaluates correctly only first 17 digits. In later versions, all digits are correct. *)
  • PARI
    default(realprecision,120); sumalt(n=2, (-1)^n/log(2*n-1))
    
  • PARI
    allocatemem(50000000);
    default(realprecision,1200); 1/(2*log(3))+intnum(x=0,1000,6*atan(x)/((log(9+9*x^2)^2+4*atan(x)^2)*sinh(3*Pi*x/2)))

Formula

Equals 1/(2*log(3))+6*Integral_{x=0..infinity} arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)).

A257898 Decimal expansion of Sum_{n=2..infinity} (-1)^n/log(log(n)), negated.

Original entry on oeis.org

1, 1, 4, 7, 7, 9, 6, 8, 0, 1, 3, 9, 8, 7, 0, 7, 5, 9, 1, 1, 5, 0, 7, 7, 8, 8, 9, 6, 7, 5, 6, 7, 9, 6, 1, 9, 1, 6, 6, 5, 1, 8, 8, 6, 8, 4, 3, 2, 8, 7, 6, 5, 2, 3, 0, 3, 2, 3, 1, 4, 7, 6, 5, 5, 4, 6, 8, 5, 6, 2, 1, 0, 6, 1, 4, 7, 4, 7, 0, 4, 4, 8, 9, 6, 5, 5, 8, 2, 4, 0, 2, 2, 1, 2, 7, 6, 5, 8, 9, 3, 1, 6, 1, 7, 7, 5, 5, 8, 5
Offset: 2

Views

Author

Keywords

Comments

A very slowly convergent series, converging in virtue of Leibniz's rule.

Examples

			-11.47796801398707591150778896756796191665188684328765...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(log(n)), n = 2..infinity), 120);
  • Mathematica
    NSum[(-1)^n/Log[Log[n]], {n, 2, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200]
  • PARI
    default(realprecision, 120); sumalt(n=2, (-1)^n/log(log(n)))

A257960 Decimal expansion of Sum_{n>=3} (-1)^n/log(log(log(n))).

Original entry on oeis.org

2, 7, 7, 8, 6, 7, 4, 9, 8, 9, 6, 8, 4, 5, 6, 8, 1, 7, 2, 3, 0, 6, 4, 4, 9, 9, 4, 5, 7, 9, 0, 3, 1, 0, 1, 4, 9, 0, 6, 9, 3, 6, 4, 2, 1, 1, 4, 6, 6, 7, 6, 5, 8, 8, 8, 3, 9, 1, 0, 1, 9, 3, 3, 2, 5, 5, 1, 9, 0, 2, 7, 1, 3, 7, 0, 9, 9, 9, 2, 5, 5, 5, 0, 1, 2, 2, 7, 6, 9, 6, 8, 8, 3, 0, 9, 6, 8, 3, 3, 0, 6, 8, 4, 7, 6, 3, 0, 8, 3
Offset: 3

Views

Author

Keywords

Comments

An extremely slowly convergent series, converging in virtue of Leibniz's rule.

Examples

			277.8674989684568172306449945790310149069364211466765...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/log(log(log(n))), n = 3..infinity), 120); # Maple 12.0 computes this expression with no problems, but later versions of Maple may have some problems with it.
  • Mathematica
    N[NSum[(-1)^n/Log[Log[Log[n]]], {n, 3, Infinity}, AccuracyGoal -> 500, Method -> "AlternatingSigns", WorkingPrecision -> 1000], 119] (* Mathematica needs higher precision than usual to compute this series *)
  • PARI
    default(realprecision, 200); precision(sumalt(n=3, (-1)^n/log(log(log(n)))), 120) /* PARI needs higher precision than usual to compute this series */

A257964 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n + log(n)).

Original entry on oeis.org

7, 6, 9, 4, 0, 2, 1, 5, 0, 2, 8, 0, 8, 0, 0, 4, 8, 4, 1, 2, 2, 1, 2, 6, 9, 7, 1, 9, 4, 6, 0, 0, 5, 3, 1, 5, 5, 7, 6, 2, 0, 5, 5, 3, 2, 0, 3, 3, 5, 4, 3, 5, 8, 7, 7, 1, 5, 5, 6, 3, 4, 4, 4, 8, 1, 1, 1, 6, 2, 1, 5, 3, 7, 1, 4, 1, 0, 2, 9, 9, 9, 0, 9, 7, 0, 5, 4, 8, 0, 7, 3, 4, 1, 4, 1, 0, 0, 3, 7, 2, 0, 4, 3, 5, 5, 6, 7, 3, 3
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges relatively slowly, but can be efficiently computed via an integral representation, which converges exponentially fast (see my formula below). I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.

Examples

			0.769402150280800484122126971946005315576205532033543...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(n-1)/(n+ln(n)), n = 1..infinity), 120);
    evalf(1/2+int((x+arctan(x))/(sinh(Pi*x)*((1+(1/2)*ln(1+x^2))^2+(x+arctan(x))^2)), x = 0..infinity), 120);
  • Mathematica
    N[NSum[(-1)^(n-1)/(n+Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],120]
    N[1/2 + NIntegrate[(x+ArcTan[x])/(Sinh[Pi*x]*((1+1/2*Log[1+x^2])^2 + (x+ArcTan[x])^2)), {x, 0, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],120]
  • PARI
    default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n+log(n)))
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/2 + intnum(x=0, 1000, (x+atan(x))/(sinh(Pi*x)*((1+0.5*log(1+x^2))^2 + (x+atan(x))^2)))

Formula

Equals 1/2 + integral_{x=0..infinity} (x+arctan(x))/(sinh(Pi*x)*((1+1/2*log(1+x^2))^2 + (x+arctan(x))^2)).

A257972 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n - log(n)).

Original entry on oeis.org

5, 4, 2, 6, 6, 6, 7, 3, 2, 5, 7, 0, 2, 8, 2, 7, 5, 4, 2, 8, 8, 8, 5, 0, 7, 4, 7, 6, 3, 9, 6, 2, 4, 7, 4, 8, 7, 9, 1, 4, 2, 0, 3, 6, 3, 7, 6, 3, 0, 9, 2, 7, 2, 0, 0, 9, 5, 0, 7, 8, 6, 6, 0, 1, 3, 8, 1, 0, 1, 1, 7, 9, 9, 6, 4, 3, 2, 3, 3, 3, 6, 7, 3, 6, 3, 9, 8, 3, 4, 5, 7, 0, 2, 2, 3, 6, 5, 4, 2, 0, 4, 8, 2, 8, 6, 3, 8, 5, 5
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges quite slowly, but can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.

Examples

			0.542666732570282754288850747639624748791420363763092...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(n-1)/(n-log(n)), n = 1..infinity), 120);
    evalf(1/2+Int((x-arctan(x))/(sinh(Pi*x)*((1-(1/2)*log(1+x^2))^2+(x-arctan(x))^2)), x = 0..infinity), 120);
  • Mathematica
    N[NSum[(-1)^(n-1)/(n-Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],119]
    N[1/2 + NIntegrate[(x-ArcTan[x])/(Sinh[Pi*x]*((1-1/2*Log[1+x^2])^2 + (x-ArcTan[x])^2)), {x, 0, 1, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],119] (* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. *)
  • PARI
    default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n-log(n)))
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/2 + intnum(x=0,1, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=1,3, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=3,1000, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) /* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. */
    
  • Sage
    from mpmath import mp, nsum, inf
    mp.dps = 110; mp.pretty = True
    nsum(lambda n: (-1)^(n-1)/(n-log(n)), [1, inf], method='alternating') # Peter Luschny, May 17 2015

Formula

Equals 1/2 + integral_{x=0..infinity} (x-arctan(x))/(sinh(Pi*x)*((1-1/2*log(1+x^2))^2 + (x-arctan(x))^2)).

A168218 Decimal expansion of the Sum_{k=2..infinity} 1/(k^2*log(k)).

Original entry on oeis.org

6, 0, 5, 5, 2, 1, 7, 8, 8, 8, 8, 2, 6, 0, 0, 4, 4, 7, 6, 9, 9, 5, 4, 9, 0, 0, 5, 2, 0, 7, 2, 4, 0, 4, 4, 7, 3, 0, 3, 2, 3, 8, 8, 9, 8, 4, 5, 5, 0, 6, 5, 7, 8, 3, 3, 1, 1, 1, 4, 7, 5, 9, 0, 4, 2, 0, 6, 8, 9, 4, 1, 1, 9, 7, 8, 0, 8, 8, 6, 8, 1, 7, 6, 1, 1, 8, 3, 1, 2, 8, 4, 1, 9, 3, 0, 8, 9, 4, 0, 1, 9, 8, 6, 9, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2009

Keywords

Comments

Also the value of the integral of the fractional part of the Riemann zeta function from 2 to infinity. - Alexander Bock, Apr 01 2014

Examples

			equals 1/(4*log(2))+1/(9*log(3))+1/(16*log(4))+ .... + = 0.605521788882600447699549005207240447303238898..
		

Crossrefs

Programs

  • Mathematica
    (* Computation needs a few minutes for 105 digits *) digits = 105; NSum[ 1/(n^2*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[NIntegrate[Zeta[x] - 1, {x, 2, Infinity}, WorkingPrecision->110], 10, 100] (* Alexander Bock, Apr 01 2014 *)
  • PARI
    intnum(x=2,[oo,log(2)],zeta(x)-1) \\ Charles R Greathouse IV, Apr 01 2014
    
  • PARI
    suminf(k=2,1/k^2/log(k)) \\ Charles R Greathouse IV, Apr 01 2014

Formula

Equals Integral_{x>=2} (zeta(x) - 1) dx.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A354295 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / (k+1).

Original entry on oeis.org

0, 9, 6, 6, 1, 4, 9, 3, 4, 7, 3, 2, 2, 2, 6, 8, 8, 7, 0, 1, 3, 5, 7, 1, 8, 2, 8, 6, 7, 7, 6, 6, 1, 5, 5, 0, 0, 5, 6, 3, 3, 8, 3, 1, 9, 4, 9, 6, 8, 3, 5, 5, 3, 5, 4, 7, 3, 1, 5, 6, 8, 0, 3, 8, 6, 1, 3, 2, 3, 8, 8, 5, 6, 5, 9, 8, 9, 6, 1, 7, 9, 1, 7, 1, 9, 3, 4, 3, 6, 0, 4, 8, 4, 8, 9, 8, 1, 7, 2, 7, 8, 1, 9, 8, 5, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2022

Keywords

Examples

			0.096614934732226887013571828677661550056338319496835535473156803861323...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 746, section 5.5.1, formula 4.

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*log(k)/(k + 1), k = 1..infinity), 105);
  • Mathematica
    N[NSum[(-1)^k*Log[k]/(k+1), {k, 1, Infinity}, WorkingPrecision -> 120, Method -> "AlternatingSigns"], 105]
  • PARI
    sumalt(k=1, (-1)^k*log(k)/(k+1))

A331421 Decimal expansion of Sum_{n >= 2} (-1)^n/log_2(n).

Original entry on oeis.org

6, 4, 0, 6, 7, 5, 8, 6, 7, 7, 5, 1, 9, 2, 7, 2, 9, 1, 2, 6, 5, 6, 1, 6, 6, 1, 1, 7, 9, 1, 7, 7, 7, 7, 7, 1, 9, 4, 5, 0, 7, 4, 9, 7, 2, 0, 0, 1, 9, 6, 4, 5, 0, 1, 9, 1, 0, 5, 3, 7, 9, 5, 7, 5, 5, 0, 4, 0, 6, 1, 3, 1, 9, 0, 3, 3, 9, 0, 8, 0, 8, 8, 1, 1, 4, 2, 1
Offset: 0

Views

Author

Daniel Hoyt, Jan 16 2020

Keywords

Comments

A slowly converging series.

Examples

			0.64067586775192729126561661179177777...
		

Crossrefs

Programs

  • PARI
    sumalt(k=2, (-1)^k/log(k))*log(2) \\ Edited by M. F. Hasler, Jan 31 2020

Formula

Equals A002162 * A099769. - M. F. Hasler, Jan 31 2020
Showing 1-10 of 11 results. Next