A099783
a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k)*3^(n-2*k).
Original entry on oeis.org
1, 3, 9, 30, 108, 405, 1548, 5967, 23085, 89451, 346842, 1345248, 5218263, 20242872, 78528609, 304640595, 1181814705, 4584708702, 17785841652, 68998115709, 267670245492, 1038395956527, 4028337876861, 15627474388899, 60624993311226
Offset: 0
-
a:=[1,3,9];; for n in [4..30] do a[n]:=6*a[n-1]-9*a[n-2]+3*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
-
I:=[1,3,9]; [n le 3 select I[n] else 6*Self(n-1) - 9*Self(n-2) + 3*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019
-
seq(coeff(series((1-3*x)/((1-3*x)^2 - 3*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 04 2019
-
LinearRecurrence[{6,-9,3}, {1,3,9}, 30] (* G. C. Greubel, Sep 04 2019 *)
-
my(x='x+O('x^30)); Vec((1-3*x)/((1-3*x)^2 - 3*x^3)) \\ G. C. Greubel, Sep 04 2019
-
def A099783_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-3*x)/((1-3*x)^2 - 3*x^3)).list()
A099783_list(30) # G. C. Greubel, Sep 04 2019
A099784
a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * 2^k * (-2)^(n-3*k).
Original entry on oeis.org
1, -2, 4, -6, 4, 16, -92, 312, -848, 1960, -3824, 5760, -3824, -15392, 88384, -299616, 814144, -1881344, 3669568, -5524608, 3657472, 14807680, -84909824, 287723520, -781639424, 1805843968, -3521371136, 5298829824
Offset: 0
-
a:=[1,-2,4];; for n in [4..30] do a[n]:=-4*a[n-1]-4*a[n-2] + 2*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
-
I:=[1,-2,4]; [n le 3 select I[n] else -4*Self(n-1) - 4*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019
-
seq(coeff(series((1-2*x)/((1-2*x)^2 - 2*x^3), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Sep 04 2019
-
LinearRecurrence[{-4,-4,2}, {1,-2,4}, 30] (* G. C. Greubel, Sep 04 2019 *)
-
my(x='x+O('x^30)); Vec((1-2*x)/((1-2*x)^2 - 2*x^3)) \\ G. C. Greubel, Sep 04 2019
-
def A099784_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-2*x)/((1-2*x)^2 - 2*x^3)).list()
A099784_list(30) # G. C. Greubel, Sep 04 2019
A099785
a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k) * 2^(n-3*k).
Original entry on oeis.org
1, 2, 4, 8, 18, 48, 144, 448, 1380, 4152, 12224, 35456, 102024, 292768, 840416, 2416384, 6959504, 20069280, 57913536, 167158656, 482462752, 1392319488, 4017460224, 11590946816, 33439639616, 96470796672, 278311599616
Offset: 0
-
a:=[1,2,4,8];; for n in [5..30] do a[n]:=6*a[n-1] -12*a[n-2] + 8*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, Sep 04 2019
-
I:=[1,2,4,8]; [n le 4 select I[n] else 6*Self(n-1) - 12*Self(n-2) + 8*Self(n-3) + 2*Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 04 2019
-
seq(coeff(series((1-2*x)^2/((1-2*x)^3 - 2*x^4), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 04 2019
-
Table[Sum[Binomial[n-k,3k]2^(n-3k),{k,0,Floor[n/4]}],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8,2},{1,2,4,8},30] (* Harvey P. Dale, Apr 01 2012 *)
-
my(x='x+O('x^30)); Vec((1-2*x)^2/((1-2*x)^3 - 2*x^4)) \\ G. C. Greubel, Sep 04 2019
-
def A099785_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-2*x)^2/((1-2*x)^3 - 2*x^4)).list()
A099785_list(30) # G. C. Greubel, Sep 04 2019
A099786
a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k)*3^(n-4*k).
Original entry on oeis.org
1, 3, 9, 27, 82, 255, 819, 2727, 9397, 33312, 120537, 441855, 1631017, 6036879, 22345074, 82589247, 304612975, 1120960983, 4116353265, 15088372416, 55224373105, 201895801851, 737506551321, 2692518758163, 9826402960882
Offset: 0
-
a:=[1,3,9,27];; for n in [5..30] do a[n]:=9*a[n-1]-27*a[n-2] + 27*a[n-3] +a[n-4]; od; a; # G. C. Greubel, Sep 04 2019
-
I:=[1,3,9,27]; [n le 4 select I[n] else 9*Self(n-1) - 27*Self(n-2) + 27*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 04 2019
-
seq(coeff(series((1-3*x)^2/((1-3*x)^3 - x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 04 2019
-
LinearRecurrence[{9,-27,27,1},{1,3,9,27},40] (* or *) CoefficientList[ Series[-((1-3 x)^2/(x (x (x (x+27)-27)+9)-1)),{x,0,40}],x] (* Harvey P. Dale, Jun 06 2011 *)
-
my(x='x+O('x^30)); Vec((1-3*x)^2/((1-3*x)^3 - x^4)) \\ G. C. Greubel, Sep 04 2019
-
def A099786_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-3*x)^2/((1-3*x)^3 - x^4)).list()
A099786_list(30) # G. C. Greubel, Sep 04 2019
A099782
a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * 2^k * 4^(n-3*k).
Original entry on oeis.org
1, 4, 16, 66, 280, 1216, 5380, 24144, 109504, 500488, 2300128, 10612224, 49096720, 227578432, 1056304384, 4907373600, 22813275520, 106100835328, 493609021504, 2296885357824, 10689540189184, 49753373831296, 231588118339072
Offset: 0
-
a:=[1,4,16];; for n in [4..30] do a[n]:=8*a[n-1]-16*a[n-2] + 2*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
-
I:=[1,4,16]; [n le 3 select I[n] else 8*Self(n-1) - 16*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019
-
seq(coeff(series((1-4*x)/((1-4*x)^2 - 2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 04 2019
-
LinearRecurrence[{8,-16,2}, {1,4,16}, 30] (* G. C. Greubel, Sep 04 2019 *)
-
my(x='x+O('x^30)); Vec((1-4*x)/((1-4*x)^2 - 2*x^3)) \\ G. C. Greubel, Sep 04 2019
-
def A099782_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/((1-4*x)^2 - 2*x^3)).list()
A099782_list(30) # G. C. Greubel, Sep 04 2019
Showing 1-5 of 5 results.
Comments