cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099846 An Alexander sequence for the knot 8_5.

Original entry on oeis.org

1, 3, 5, 8, 15, 29, 55, 104, 196, 368, 692, 1304, 2457, 4627, 8713, 16408, 30899, 58189, 109583, 206368, 388632, 731872, 1378264, 2595552, 4887953, 9205011, 17334909, 32645160, 61477479, 115774605, 218027143, 410589480, 773223548, 1456137296
Offset: 0

Views

Author

Paul Barry, Oct 27 2004

Keywords

Comments

The g.f. is a transformation of the g.f. 1/((1-x)(1-2x-x^2)) of A048739 under the mapping G(x)->(1/(1+x^2)^3)G(x/(1+x^2)). The denominator of the g.f. is a parameterization of the Alexander polynomial of the knot 8_5. Relates 8_5 to the Pell numbers.

Crossrefs

Cf. A099854.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x+4x^2-5x^3+4x^4-3x^5+x^6),{x,0,40}],x] (* or *) LinearRecurrence[{3,-4,5,-4,3,-1},{1,3,5,8,15,29},41] (* Harvey P. Dale, Sep 25 2011 *)

Formula

G.f.: 1/(1-3x+4x^2-5x^3+4x^4-3x^5+x^6).
a(0)=1, a(1)=3, a(2)=5, a(3)=8, a(4)=15, a(5)=29, a(n)=3*a(n-1)- 4*a(n-2)+ 5*a(n-3)-4*a(n-4)+3*a(n-5)-a(n-6). - Harvey P. Dale, Sep 25 2011