cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099856 Expansion of (1+3*x)/(1-3*x).

Original entry on oeis.org

1, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974, 45753584909922
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

A099858 gives a Chebyshev transform. Binomial transform is A083420.
Hankel transform is 1, -18, 0, 0, 0, 0, 0, 0, 0, ... - Philippe Deléham, Dec 13 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+3x)/(1-3x),{x,0,30}],x] (* or *) Join[{1}, NestList[3#&,6,30]] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    Vec((1+3*x)/(1-3*x) + O(x^40)) \\ Michel Marcus, Dec 11 2015

Formula

a(n) = 2*3^n - 0^n.
a(n) = A025192(n+1), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = Sum_{k=0..n} A093561(n,k)*2^k. - Philippe Deléham, Dec 13 2011
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: 2*exp(3*x) - 1.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

a(26)-a(28) from Elmo R. Oliveira, Aug 23 2024