cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099870 Decimal expansion of Sum_{n>0} 1/(n^log(n)).

Original entry on oeis.org

2, 2, 3, 8, 1, 8, 1, 3, 0, 6, 7, 9, 6, 6, 9, 3, 0, 4, 3, 1, 8, 3, 1, 3, 6, 9, 9, 4, 1, 9, 9, 7, 1, 8, 0, 0, 9, 6, 1, 6, 1, 8, 1, 0, 8, 1, 7, 6, 5, 0, 0, 5, 4, 2, 2, 3, 9, 1, 5, 9, 0, 5, 0, 8, 1, 1, 6, 8, 2, 6, 9, 2, 7, 4, 6, 6, 2, 7, 0, 1, 2, 7, 7, 5, 7, 0, 5, 6, 4, 8, 4, 8, 3, 5, 3, 5, 5, 8, 1, 0, 8, 0, 1, 8, 6
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 29 2004

Keywords

Comments

This series converges slowly. - Bernard Schott, May 23 2019
This series converges more slowly than Sum_{n>=0} 1/a^n for every a > 1 but faster than Sum_{n>=1} 1/n^p for every p > 1. - Jianing Song, Jul 25 2021

Examples

			2.23818130679669304318313699419971800961618108176500542239159050811...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 9c, page 293.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); [(&+[1/k^Log(k): k in [1..1000]])]; // G. C. Greubel, Nov 20 2018
    
  • Maple
    evalf(sum(1/(n^log(n)), n=1..infinity), 110); \\ Bernard Schott, May 23 2019
  • Mathematica
    s = 0; Do[s = N[s + 1/n^Log[n], 256], {n, 10^7}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 02 2004 *)
  • PARI
    default(realprecision,35);sum(n=1,50000,1./(n^log(n)))
    
  • PARI
    sumpos(n=1, 1/(n^log(n))) \\ Michel Marcus, May 24 2019
    
  • Sage
    numerical_approx(sum(1/k^log(k) for k in [1..1000]), digits=100) # G. C. Greubel, Nov 20 2018

Formula

Equals Sum_{n>=1} 1/(n^log(n)).

Extensions

More terms from Robert G. Wilson v, Nov 02 2004