A099870 Decimal expansion of Sum_{n>0} 1/(n^log(n)).
2, 2, 3, 8, 1, 8, 1, 3, 0, 6, 7, 9, 6, 6, 9, 3, 0, 4, 3, 1, 8, 3, 1, 3, 6, 9, 9, 4, 1, 9, 9, 7, 1, 8, 0, 0, 9, 6, 1, 6, 1, 8, 1, 0, 8, 1, 7, 6, 5, 0, 0, 5, 4, 2, 2, 3, 9, 1, 5, 9, 0, 5, 0, 8, 1, 1, 6, 8, 2, 6, 9, 2, 7, 4, 6, 6, 2, 7, 0, 1, 2, 7, 7, 5, 7, 0, 5, 6, 4, 8, 4, 8, 3, 5, 3, 5, 5, 8, 1, 0, 8, 0, 1, 8, 6
Offset: 1
Examples
2.23818130679669304318313699419971800961618108176500542239159050811...
References
- J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 9c, page 293.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
SetDefaultRealField(RealField(100)); [(&+[1/k^Log(k): k in [1..1000]])]; // G. C. Greubel, Nov 20 2018
-
Maple
evalf(sum(1/(n^log(n)), n=1..infinity), 110); \\ Bernard Schott, May 23 2019
-
Mathematica
s = 0; Do[s = N[s + 1/n^Log[n], 256], {n, 10^7}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 02 2004 *)
-
PARI
default(realprecision,35);sum(n=1,50000,1./(n^log(n)))
-
PARI
sumpos(n=1, 1/(n^log(n))) \\ Michel Marcus, May 24 2019
-
Sage
numerical_approx(sum(1/k^log(k) for k in [1..1000]), digits=100) # G. C. Greubel, Nov 20 2018
Formula
Equals Sum_{n>=1} 1/(n^log(n)).
Extensions
More terms from Robert G. Wilson v, Nov 02 2004
Comments