cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099892 XOR BINOMIAL transform of A003188 (Gray code numbers); also the main diagonal of the XOR difference triangle A099891.

Original entry on oeis.org

0, 1, 3, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2004

Keywords

Comments

See A099884 for the definitions of the XOR BINOMIAL transform and the XOR difference triangle.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 2]}, Switch[n, 0, 0, 1, 1, 2^e, 3*2^(e - 1), , 0]]; Array[a, 100, 0] (* _Amiram Eldar, Aug 31 2023, corrected by Michael Shamos, May 22 2025 *)
  • PARI
    {a(n)=local(B);B=0;for(i=0,n,B=bitxor(B,binomial(n,i)%2*(bitxor((n-i),(n-i)\2))));B}

Formula

a(2^n) = 3*2^(n-1) for n>0, with a(0)=0, a(1) = 1 and a(k)=0 otherwise. a(n) = SumXOR_{i=0..n} (C(n, i)mod 2)*A003188(n-i), where A003188(k)=bitxor(k, [k/2]) and SumXOR is summation under XOR.
Multiplicative with a(2^e) = 3*2^(e-1), a(p^e) = 0 otherwise. - David W. Wilson, Jun 12 2005
Dirichlet g.f.: (2^s+1)/(2^s-2). - R. J. Mathar, Apr 14 2011