cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002

A099891 XOR difference triangle of A003188 (Gray code numbers), read by rows.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 2, 1, 3, 0, 6, 4, 5, 6, 6, 7, 1, 5, 0, 6, 0, 5, 2, 3, 6, 6, 0, 0, 4, 1, 3, 0, 6, 0, 0, 0, 12, 8, 9, 10, 10, 12, 12, 12, 12, 13, 1, 9, 0, 10, 0, 12, 0, 12, 0, 15, 2, 3, 10, 10, 0, 0, 12, 12, 0, 0, 14, 1, 3, 0, 10, 0, 0, 0, 12, 0, 0, 0, 10, 4, 5, 6, 6, 12, 12, 12, 12, 0, 0, 0, 0, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2004

Keywords

Comments

Main diagonal is A099892, the XOR BINOMIAL transform of A003188. See A099884 for the definitions of the XOR BINOMIAL transform and the XOR difference triangle.

Examples

			Rows begin:
[0],
[1,1],
[3,2,3],
[2,1,3,0],
[6,4,5,6,6],
[7,1,5,0,6,0],
[5,2,3,6,6,0,0],
[4,1,3,0,6,0,0,0],
[12,8,9,10,10,12,12,12,12],
...
where A003188 fills the leftmost column.
		

Crossrefs

Cf. A047999, A003188 (column k=0), A006519 (column k=1), A099892 (diagonal n=k).
Other triangles: A099884, A099889, A099893.

Programs

  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*(bitxor((n-i),(n-i)\2))));B}

Formula

T(n, k) = SumXOR_{i=0..k} (C(k, i)mod 2)*(A003188(n-i)), where SumXOR is the analog of summation under the binary XOR operation and C(k, i)mod 2 = A047999(k, i). T(2^n, 2^n) = 3*2^(n-1) for n>0, with T(1, 1)=1 and T(k, k)=0 elsewhere.
T(n,1) = A006519(n), the lowest 1-bit of n (see formula by Franklin T. Adams-Watters in A003188). - Kevin Ryde, Jul 02 2020
Showing 1-2 of 2 results.