A099902 Multiplies by 2 and shifts right under the XOR BINOMIAL transform (A099901).
1, 3, 7, 11, 23, 59, 103, 139, 279, 827, 1895, 2955, 5655, 14395, 24679, 32907, 65815, 197435, 460647, 723851, 1512983, 3881019, 6774887, 9142411, 18219287, 54002491, 123733863, 192940939, 369104407, 939538491, 1610637415, 2147516555
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..3290
Programs
-
Maple
a:= n -> add((binomial(n-k+floor(k/2),floor(k/2)) mod 2)*2^k, k=0..n): map(a, [$0..100]); # Robert Israel, Jan 24 2016
-
PARI
{a(n)=local(B);B=0;for(k=0,n,B=bitxor(B,binomial(n-k+k\2,k\2)%2*2^k));B}
-
PARI
a(n)=sum(k=0,n,binomial(n-k+k\2,k\2)%2*2^k)
-
Python
def A099902(n): return sum(int(not ~((n<<1)-k)&k)<
Chai Wah Wu, Jul 30 2025
Formula
a(n) = SumXOR_{k=0..n} (binomial(n-k+floor(k/2), floor(k/2)) mod 2)*2^k for n >= 0.
a(n) = SumXOR_{i=0..n} (C(n, i) mod 2)*A099901(n-i), where SumXOR is the analog of summation under the binary XOR operation and C(i, j) mod 2 = A047999(i, j).
a(n) = Sum_{k=0..n} A047999(n-k+floor(k/2), floor(k/2)) * 2^k.
From Paul Barry, May 10 2005: (Start)
a(n) = Sum_{k=0..2n} (binomial(k, 2n-k) mod 2)*2^(2n-k);
a(n) = Sum_{k=0..n} (binomial(2n-k, k) mod 2)*2^k. (End)
a(n) = Sum_{k=0..2n} A106344(2n,k)*2^(2n-k). - Philippe Deléham, Dec 18 2008
Comments