A099901
Shifts left and divides by 2 under the XOR BINOMIAL transform (A099902).
Original entry on oeis.org
1, 2, 6, 14, 22, 46, 118, 206, 278, 558, 1654, 3790, 5910, 11310, 28790, 49358, 65814, 131630, 394870, 921294, 1447702, 3025966, 7762038, 13549774, 18284822, 36438574, 108004982, 247467726, 385881878, 738208814, 1879076982, 3221274830
Offset: 0
-
{a(n)=local(B);B=0;if(n==0,B=1, for(k=0,n-1, B=bitxor(B,binomial(n-1-k+k\2,k\2)%2*2^(k+1))));B}
A101624
Stern-Jacobsthal numbers.
Original entry on oeis.org
1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, 17, 103, 69, 139, 1, 279, 277, 827, 273, 1895, 1349, 2955, 257, 5655, 5141, 14395, 4113, 24679, 16453, 32907, 1, 65815, 65813, 197435, 65809, 460647, 329029, 723851, 65793, 1512983, 1381397, 3881019, 1118225
Offset: 0
-
a101624 = sum . zipWith (*) a000079_list . map (flip mod 2) . a011973_row
-- Reinhard Zumkeller, Jul 14 2015
-
prpr = 1
prev = 1
print("1, 1", end=", ")
for i in range(99):
current = (prev)^(prpr*2)
print(current, end=", ")
prpr = prev
prev = current
# Alex Ratushnyak, Apr 14 2012
-
def A101624(n): return sum(int(not k & ~(n-k))*2**k for k in range(n//2+1)) # Chai Wah Wu, Jun 20 2022
A099900
XOR difference triangle, read by rows, of A099901 (in leftmost column) such that the main diagonal equals A099901 shift left and divided by 2.
Original entry on oeis.org
1, 2, 3, 6, 4, 7, 14, 8, 12, 11, 22, 24, 16, 28, 23, 46, 56, 32, 48, 44, 59, 118, 88, 96, 64, 112, 92, 103, 206, 184, 224, 128, 192, 176, 236, 139, 278, 472, 352, 384, 256, 448, 368, 412, 279, 558, 824, 736, 896, 512, 768, 704, 944, 556, 827, 1654, 1112, 1888, 1408
Offset: 0
Rows begin:
[_1],
[_2,3],
[6,_4,7],
[14,_8,12,11],
[22,24,_16,28,23],
[46,56,_32,48,44,59],
[118,88,96,_64,112,92,103],
[206,184,224,_128,192,176,236,139],
[278,472,352,384,_256,448,368,412,279],
[558,824,736,896,_512,768,704,944,556,827],
[1654,1112,1888,1408,1536,_1024,1792,1472,1648,1116,1895],...
notice that the column terms equal twice the diagonal (with offset), and that the central terms in the rows form the powers of 2.
A101680
A modular binomial transform of 10^n.
Original entry on oeis.org
1, 11, 111, 1011, 10111, 111011, 1100111, 10001011, 100010111, 1100111011, 11101100111, 101110001011, 1011000010111, 11100000111011, 110000001100111, 1000000010001011, 10000000100010111, 110000001100111011, 1110000011101100111, 10110000101110001011, 101110001011000010111
Offset: 0
-
a(n) = sum(k=0, n, lift(Mod(binomial(2*n-k, k), 2))*10^k); \\ Michel Marcus, Jul 31 2025
-
def A101680(n): return sum(int(not ~((n<<1)-k)&k)*10**k for k in range(n+1)) # Chai Wah Wu, Jul 30 2025
Showing 1-4 of 4 results.
Comments