cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099924 Self-convolution of Lucas numbers.

Original entry on oeis.org

4, 4, 13, 22, 45, 82, 152, 274, 491, 870, 1531, 2676, 4652, 8048, 13865, 23798, 40713, 69446, 118144, 200510, 339559, 573894, 968183, 1630632, 2742100, 4604572, 7721797, 12933334, 21637221, 36159610, 60367976, 100687786
Offset: 0

Views

Author

Ralf Stephan, Nov 01 2004

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 57.

Crossrefs

Cf. A001629, A000032. Bisection: A203573 (even), 2*A203574 (odd).

Programs

  • Mathematica
    Table[Sum[LucasL[k]LucasL[n-k],{k,0,n}],{n,0,40}] (* or *) LinearRecurrence[ {2,1,-2,-1},{4,4,13,22},40] (* Harvey P. Dale, Mar 06 2012 *)

Formula

a(n) = (n+1)*L(n) + 2F(n+1) = Sum_{k=0..n} L(k)*L(n-k).
G.f.: (2-x)^2/(1-x-x^2)^2, corrected Aug 23 2022
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=4, a(1)=4, a(2)=13, a(3)=22. - Harvey P. Dale, Mar 06 2012
a(n) = 2*A099920(n+1)-A099920(n). - R. J. Mathar, Aug 23 2022