cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099925 a(n) = Lucas(n) + (-1)^n.

Original entry on oeis.org

3, 0, 4, 3, 8, 10, 19, 28, 48, 75, 124, 198, 323, 520, 844, 1363, 2208, 3570, 5779, 9348, 15128, 24475, 39604, 64078, 103683, 167760, 271444, 439203, 710648, 1149850, 1860499, 3010348, 4870848, 7881195, 12752044, 20633238, 33385283, 54018520, 87403804
Offset: 0

Views

Author

Ralf Stephan, Nov 02 2004

Keywords

Comments

Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio and put c = sum {n = 1..inf} 1/2^floor(n*(phi + 2)). The bicimal expansion of the constant c begins 0.001000100100010001001.... The binary digits are the generalized Fibonacci word A221150.
The sequence 2^a(n) for n >= 1 gives the partial quotients, apart from the first, in the simple continued fraction expansion of the constant 1/2*c = 0.06692 72114 83804 90296 ... = 1/(14 + 1/(2^0 + 1/(2^4 + 1/(2^3 + 1/(2^8 + 1/(2^10 + 1/(2^19 + ...))))))). Cf. A008346. - Peter Bala, Nov 06 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 - 2 x^2)/((1 + x) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Sep 16 2020 *)
  • PARI
    Vec((3-2*x^2)/((1+x)*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Jun 03 2016

Formula

G.f.: (3-2*x^2)/((1+x)*(1-x-x^2)).
a(0) = 3, a(1) = 0, a(2) = 4 and a(n) = 2*a(n-2) + a(n-3) for n >= 3. - Peter Bala, Nov 06 2013
a(n) = A068397(n) - 1 for n>2.
a(n) = ((-1)^n+(1/2*(1-sqrt(5)))^n+(1/2*(1+sqrt(5)))^n). - Colin Barker, Jun 03 2016